渐开线起始圆和基圆之间有约束关系吗?

最近看到了一个问题:“渐开线起始圆和基圆之间有约束关系吗?有起始圆要比基圆大某个固定数值这么一说吗?”,这期咱们就来说说这个话题:
在这里插入图片描述
如上图所示:一对圆柱齿轮副中,一个齿轮的渐开线起始圆是与另一个齿轮齿顶部开始啮合位置的那个圆。为了保证在啮合过程中,在这个圆到齿顶的渐开线的存在(也就是说它不是被切点或者是在齿根过渡曲线上面),就是在这个圆以上的渐开线是实际工作的部分,故称作“有效”。委托制造厂家时就需要明确标注出来这个圆的直径,来保证齿轮的渐开线开始位置小于这个在齿轮副啮合时的起始点圆直径。
在这里插入图片描述
上图中“Form diameter”就是加工后的渐开线开始位置所在圆,“ Start of active profile(SAP)”到“End of active profile(EAP)”是有效啮合的渐开线的部分啦。同一个齿轮,与不同的参数齿轮啮合时,各个配对齿轮要求的起始圆直径也是不一样的,如果同时和多个齿轮啮合,那一般以最小的那个圆作为有效起始圆直径,这样就可以保证所有的啮合都符合要求。当齿轮副的参数因追求高重合度,有可能造成啮合点接近或者小于基圆,这是应该注意避免的不合理设计。

采用不同的加工方法,能得到的渐开线成形圆的直径会有所不同。下面就举一个实际的例子来看看,一个外齿圆柱渐开线齿轮的参数如下:在这里插入图片描述
首先看用滚刀滚齿加工出的齿轮的齿形:在这里插入图片描述
这里我给了滚刀齿顶全圆弧,也就是刀具的齿顶圆弧最大,对应渐开线的起始点如下图,我画出了一段从基圆到齿顶的渐开线作为参考,这个例子里面根径是大于基圆的,有些参数下,根径是在基圆以下的。在这里插入图片描述
下面看看用一个齿顶全圆弧、具有17个齿插齿刀加工这个齿轮渐开线起始圆的直径又是多少?在这里插入图片描述
中间是一个17齿的插齿刀,齿形看着有点怪,因为用工件的分度圆φ115.470计算的插齿刀有效渐开线是到基圆了,基圆以下本应是插齿刀加工时产生的过渡曲线,我这里为了方便就有一段直线替代了,它不会影响加工25齿的齿轮,可以看看下面这个包络:在这里插入图片描述
可以看到,用插齿刀齿顶全圆弧加工出的齿轮渐开线起始圆直径为φ112.571mm,它是大于用滚刀加工的φ112.268mm的。在这里插入图片描述
那如果是用成形铣刀去加工呢?结果可以想到,齿轮的齿槽形状设计成什么样,基本就可以加工成什么样,渐开线的起始圆直径大小和齿根的圆弧大小成正比,圆弧越大,起始圆越高。在这里插入图片描述
那么基圆与有效起始圆直径是否存在关系?从上面可以看到,基圆和起始圆以及齿轮的根径的位置是至关重要的因素。再来说最开始的问题,基圆和有效起始圆直径必须是一个固定的数值吗?相信看到这里您应该有答案了,没错并没有固定的要求,或者说没办法设定一个固定的要数值来满足所有的情况。齿轮不光要能设计出来,能叫加工出来,并且能保证较高的良率也同等重要。从工艺上说,这决不是嘴上提个要求就能实现的,在这个要求下,必须对每一种工艺上使用的刀具的具体参数作核算,考虑各种加工中存在误差。如果理论上能达到,当然也就保证了啮合的起始圆的位置。

### 使用MATLAB创建齿轮齿廓模型 #### 创建本环境设置 为了在 MATLAB 中创建齿轮齿廓模型,首先需要定义一些必要的参数。这些参数通常包括但不限于齿数、模数、压力角等。 ```matlab % 定义齿轮本参数 z = 20; % 齿数 m = 1; % 模数 alpha = deg2rad(20); % 压力角度转换成弧度制 ha = 1.0; % 齿顶高系数 c = 0.25; % 顶隙系数 ``` #### 计算几何尺寸 根据上述参数,可以进一步计算齿轮的关键几何尺寸,如半径、分度直径以及齿根直径等[^3]。 ```matlab rb = m * z * cos(alpha) / 2; % 半径 r = m * z / 2; % 分度直径的一半 rf = r - ha*m - c*m; % 齿根半径 ra = r + ha*m; % 齿顶半径 ``` #### 绘制标准渐开线齿廓 对于直齿轮而言,其理论上的齿廓形状遵循渐开线规律。下面这段代码展示了如何于给定的参数,在 MATLAB 中绘制一条完整的渐开线上下对称部分组成的单个齿形轮廓[^4]。 ```matlab theta_start = acos(rb/r); theta_end = pi/(2*z); thetas = linspace(theta_start, theta_end, 100)'; involute_x = @(t) rb*(cos(t)+t.*sin(t)); involute_y = @(t) rb*(sin(t)-t.*cos(t)); x_involute_top = involute_x(thetas); y_involute_top = involute_y(thetas); x_involute_bottom = fliplr(-x_involute_top); y_involute_bottom = fliplr(y_involute_top); figure; plot([fliplr(x_involute_bottom), ra*cos(linspace(pi/z,-pi/z,length(x_involute_top))), x_involute_top], ... [fliplr(y_involute_bottom), ra*sin(linspace(pi/z,-pi/z,length(y_involute_top))), y_involute_top]); axis equal; title('Standard Involute Gear Tooth Profile'); xlabel('X Axis (mm)'); ylabel('Y Axis (mm)'); grid on; ``` 此段脚本实现了从指定起始位置到结束位置沿渐开线路径采样点的过程,并将其连接起来形成半个齿的空间曲线;接着镜像复制这部分数据以构建整个齿形并闭合它。最后通过 `plot` 函数可视化这个二维图形[^1]。 #### 应用于实际工程案例中的修正处理 当涉及到具体的工程项目时,往往还需要考虑制造误差等因素的影响,因此可能要对面型做一些调整优化工作——即所谓的“修形”。这可以通过引入额外的经验公式或特定应用场景下的约束条件来完成。例如,在某些情况下可能会应用到类似于 Δ=0.03 mm 的微小偏移量来进行局部形态修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

woodykissme

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值