1.概述
本文档阐述SSD检测算法原理,及以MobileNet为Backbone的网络搭建方式。
十里桃园首发,转载请注明
- Why SSD?
无论是机器学习或是深度学习一般都可分为两个部分:特征提取与分类任务。
在传统的机器学习方法中,特征提取需要依据图像以及特有的检测目的抓取特有特征,如偏重物体轮廓的HOG特征,注重明暗对比的Haar特征等,特征被描述之后送入机器学习算法分类,如SVM、Adaboost等,进而判断物体的分类。将上述的流程在图像上做滑框操作或代入已图像预处理的ROI框即完成了图像检测与识别任务。
图.1 机器学习目标检测简图
在深度学习中,特征提取需要由特有的特征提取神经网络来完成,如VGG、MobileNet,ResNet等,这些特征提取网络往往被称为Backbone。通常来讲在BackBone后面接全连接层(FC)来执行分类任务。但FC对目标的位置识别乏力。经过算法的发展,当前主要以特定的功能网络来代替FC的作用,如Mask-Rcnn、SSD、SSDlite、YOLO等。
图.2 深度神经网络特征提取+SSD分类器
本文主要阐述说明以MobileNet_v2为Backbone,以SSD为分类器来执行分类任务的具体架构。