加热炉钢坯温度计算传热学应用

非常感谢“计算传热学大叔”,大家了解更多,请移步前期文章:https://blog.csdn.net/weixin_37928884/article/details/127709215

计算钢坯温度
得到加热过程钢坯内部的二维等温曲线, 钢坯表面温度、 断面温度与中心温度差等。 对优化加热炉的炉温控制
提供了重要的依据。提高了终点的控制精度,保证了钢材的质量。

EXCEL计算传热表下载地址:
https://download.csdn.net/download/weixin_37928884/89583599

第一类边界条件
在这里插入图片描述

clc  
clear 
close all  
length = 0.135;     %厚度 
Tb = 930;     %初始温度 
TL = 1150;     %边界温度1 
TR = 1150;       %边界温度2 
den = 7840;      %控制体密度 
C = 465;       %控制体比热 
k = 28.5;     %控制体导热系数 
s = 0;     %源项 
h = 375;   %换热系数
dt = 1;       %步长 
n = 10;      %网格数 
steps =3000;       %步数  
dx = length / n;  
ae0 = zeros(1,n); 
aw0 = zeros(1,n); 
ap0 = zeros(1,n); 
ap1 = zeros(1,n); 
T0 = Tb * ones(steps+1 ,n+2); 
T0(:,1) = TL * ones(1,steps + 1).'; 
T0(:,n + 2) = TR * ones(1,steps + 1).'; 
b = s * dx;    
for x = 1:steps      
    for i = 2:n          
        ae0(1,i)  = k / dx;           
        aw0(1,i) = k / dx;           
        ap0(1,i) = den * C * dx / dt - ae0(1,i) - aw0(1,i);          
        ap1(1,i) = ae0(1,i) + aw0(1,i) + ap0(1,i);      
    end
    for i = 1           
        ae0(1,i)  = k /( dx / 2);           
        aw0(1,i)  = k / dx;           
        ap0(1,i) = den * C * dx / dt - ae0(1,i) - aw0(1,i);          
        ap1(1,i) = ae0(1,i) + aw0(1,i) + ap0(1,i);      
    end
    for i = n          
        ae0(1,i)  = k / dx;           
        aw0(1,i)   = k /( dx / 2);           
        ap0(1,i) = den * C * dx / dt - ae0(1,i) - aw0(1,i);          
        ap1(1,i) = ae0(1,i) + aw0(1,i) + ap0(1,i);      
    end
end
for x = 2:steps+1      
    for i = 2 : n + 1          
        T0(x , i) = ( ae0(1,i-1) * T0(x-1,i+1) + aw0(1,i-1) * T0 (x-1,i-1) + ap0(1,i-1)* T0(x-1,i) + b)/ap1(1,i-1);      
    end
end
xlist = length/(2 * n) : length/n : length - length/(2 * n);        %坐标(不包括边界) 
Tend = T0(steps + 1,2 : n +1);      %结束时温度 
ylist = T0(steps + 1 ,:); 
result =[0 xlist length  ylist];        %坐标和结束温度  
subplot(1,2,1); 
plot(xlist,Tend) 
xlabel('坐标/m'); 
ylabel('温度/℃'); 
title(['末态温度分布/网格数:',num2str(n)]); 
grid on;  
subplot(1,2,2);
for i = 1 : n + 1     
    x = 1 : steps + 1;     
    time = x * dt/3600;     
    y = T0(:,i);     
    plot(time,y);     
    title(['各点温度与时间关系/步数:',num2str(steps),'/步长:',num2str(dt),'s']);    
    xlabel('时间/h');     
    ylabel('温度/℃');    
    hold on 
end

第三类边界条件

在这里插入图片描述

clc  
clear 
close all  
length = 0.135;     %厚度 
Tb = 930;     %初始温度 
TL = 1150;     %边界温度1 
TR = 1150;       %边界温度2 
den = 7840;      %控制体密度 
C = 465;       %控制体比热 
k = 28.5;     %控制体导热系数 
s = 0;     %源项 
h = 375;   %换热系数
dt = 1;       %步长 
n = 10;      %网格数 
steps =3000;       %步数  
dx = length / n;  
ae0 = zeros(1,n); 
aw0 = zeros(1,n); 
ap0 = zeros(1,n); 
ap1 = zeros(1,n); 
T0 = Tb * ones(steps+1 ,n+2); 
T0(:,1) = TL * ones(1,steps + 1).'; 
T0(:,n + 2) = TR * ones(1,steps + 1).'; 
b = s * dx;    
for x = 1:steps      
    for i = 2:n          
        ae0(1,i)  = k / dx;           
        aw0(1,i) = k / dx;           
        ap0(1,i) = den * C * dx / dt - ae0(1,i) - aw0(1,i);          
        ap1(1,i) = ae0(1,i) + aw0(1,i) + ap0(1,i);      
    end
    for i = 1           
        ae0(1,i)  = 1/(((dx / 2)/k) + 1/h) ;%k /( dx / 2);           
        aw0(1,i)  = k / dx;           
        ap0(1,i) = den * C * dx / dt - ae0(1,i) - aw0(1,i);          
        ap1(1,i) = ae0(1,i) + aw0(1,i) + ap0(1,i);      
    end
    for i = n          
        ae0(1,i)  = k / dx;           
        aw0(1,i)   = 1/(((dx / 2)/k) + 1/h);%k /( dx / 2);           
        ap0(1,i) = den * C * dx / dt - ae0(1,i) - aw0(1,i);          
        ap1(1,i) = ae0(1,i) + aw0(1,i) + ap0(1,i);      
    end
end
for x = 2:steps+1      
    for i = 2 : n + 1          
        T0(x , i) = ( ae0(1,i-1) * T0(x-1,i+1) + aw0(1,i-1) * T0 (x-1,i-1) + ap0(1,i-1)* T0(x-1,i) + b)/ap1(1,i-1);      
    end
end
xlist = length/(2 * n) : length/n : length - length/(2 * n);        %坐标(不包括边界) 
Tend = T0(steps + 1,2 : n +1);      %结束时温度 
ylist = T0(steps + 1 ,:); 
result =[0 xlist length  ylist];        %坐标和结束温度  
subplot(1,2,1); 
plot(xlist,Tend) 
xlabel('坐标/m'); 
ylabel('温度/℃'); 
title(['末态温度分布/网格数:',num2str(n)]); 
grid on;  
subplot(1,2,2);
for i = 1 : n + 1     
    x = 1 : steps + 1;     
    time = x * dt/3600;     
    y = T0(:,i);     
    plot(time,y);     
    title(['各点温度与时间关系/步数:',num2str(steps),'/步长:',num2str(dt),'s']);    
    xlabel('时间/h');     
    ylabel('温度/℃');    
    hold on 
end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨铮...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值