机器学习总结
文章平均质量分 81
岸芃
有梦为马,随处可栖
展开
-
机器学习总结(二):梯度消失和梯度爆炸
神经网络的训练过程通常分为两个阶段:前向传播和反向传播。 前向传播如下图所示,原理比较简单 上一层的神经元与本层的神经元有连接,那么本层的神经元的激活等于上一层神经元对应的权值进行加权和运算,最后通过一个非线性函数(激活函数)如ReLu,sigmoid等函数,最后得到的结果就是本层神经元的输出。逐层逐神经元通过该操作向前传播,最终得到输出层的结果。 反向传播由最后一层开始,逐层向前传播进行原创 2017-04-05 14:39:28 · 34031 阅读 · 0 评论 -
机器学习总结(三):如何防止过拟合
通常过拟合由以下三种原因产生:1. 假设过于复杂;2. 数据存在很多噪音;3. 数据规模太小。 过拟合的解决方法通常有:1. early stopping;2. 数据集扩增;3. 正则化;4. Dropout。Early stopping:对模型的训练过程就是对模型参数的进行学习更新的过程。参数学习的过程中往往会用到一些迭代算法,比如梯度下降法。Early stopping的目的就是在迭代次数还未原创 2017-04-08 17:34:34 · 7036 阅读 · 1 评论 -
机器学习总结(四):RF,SVM和NN的优缺点
1. 随机森林优缺点随机森林(RF)是Bagging的一个扩展变体。RF在以决策树为基分类器进行集成的基础上,进一步在决策树的训练过程中引入了随机属性选择。Bagging就是对数据集训练多个基分类器,然后将基分类器得到的结果进行投票表决作为最终分类的结果。基分类器在构建过程中需要尽可能保证训练出的基分类器有比较大的差异性,这就需要用对训练样本集进行采样,不同的基分类器训练不同的样本集。但是样本过少会原创 2017-04-13 18:06:01 · 37911 阅读 · 0 评论 -
机器学习总结(五):Batch Normalization
Batch Normalization是深度学习领域在2015年非常热门的一个算法,许多网络应用该方法进行训练,并且取得了非常好的效果。众所周知,深度学习是应用随机梯度下降法对网络进行训练,尽管随机梯度下降训练神经网络非常有效,但是它有一个缺点,就是需要人为的设定很多参数,比如学习率,权重衰减系数,Dropout比例等。这些参数的选择对训练结果至关重要,以至于训练的大多数精力都耗费在了调参上面。BN原创 2017-04-13 20:50:34 · 1480 阅读 · 0 评论 -
机器学习总结(六):K-means总结
K-Means是非常常见的聚类算法,思想简单,易于实现,现在已经被广泛应用到各种聚类任务当中。K-Means的基本思想是先初始化聚类中心,然后计算所有点到不同聚类中心的距离,重新计算聚类中心,反复迭代,直到聚类中心没有变化或者到达最大的迭代次数停止。因为思想简单,所以易于使用,但是这个方法存在着很多问题。1. 计算量非常大;2. 聚类中心的数量K需要提前设定,并且聚类中心的数量也会影响到聚类结果;3原创 2017-04-24 11:51:16 · 2012 阅读 · 0 评论 -
机器学习总结(一):常见的损失函数
这是博主的第一篇博客,mark一下,希望今后能够坚持下去。博主是机器学习菜鸟,将来希望从事机器学习的工作,最近在整理机器学习的知识点,将这些总结的文字以博客的形式展现出来,一是便于复习,二是分享出来希望能对别人会有一点点帮助。最近搜集了一些机器学习常见的面试问题,将问题和回答整理出来,做到有备无患。(随时进行补充)一、常见的损失函数通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这原创 2017-03-30 15:25:36 · 50080 阅读 · 4 评论