排序算法之堆排序

要理解什么是堆排序(heapsort)首先要介绍堆,(二叉)堆是这样的一种可以看成近似完全二叉树的数据结构:


采用最大堆,最大堆要满足的要求是对于任意一个节点i中的元素要大于其左孩子和右孩子节点中的元素。这样根节点中所存储的一定是改组元素中的最大元素。如图所示,图(a)表示该种数据结构,图(b)表示实际存储的形式。于是我们对任意节点i,2(i+1)就表示它的左孩子,2(i+1)+1就表示它的右孩子(i从0开始)。

了解了堆的属性后 ,我们就先直观的感受下堆排序的整个流程:第一步:拿到一个带排序的数组A后,先调用BuildMaxHeap将数组A变成一个最大堆,那么此时第一个元素就是最大的,将第一个元素和最后一个元素交换(Swap),然后在对数组A的前len-1(len是数组A的长度)个元素调用MaxHeapify(就是将数组A的前len-1个元素变成一个最大堆);重复该过程就可将数组排好序。

下面是代码和运行结果:

代码分析:函数MaxHeapify假定输入节点的左孩子和右孩子都是一个最大堆,然后将该节点成为
一个最大堆。这样BuildMaxHeap就可以反复调用该函数来实现建立最大堆的功能。HeapSort过程见前文。
在输出中我们可以清晰地看出该函数的运行过程。
总结:堆排序是一种算法复杂度为O(nlgn)的原址的排序算法,使用了一种称之为堆的重要数据
结构。


#include<iostream>
using namespace std;
void MaxHeapify(int* arr, int i,int len) {
	i++;
	int l = 2 * i;
	int r = 2 * i + 1;
	int largest = i-1;
	if (l-1 < len && arr[l-1] > arr[i-1]) {
		largest = l-1;
	}
	if (r -1< len && arr[r-1] > arr[largest]) {
		largest = r-1;
	}
	if (largest != i-1) {
		//int temp = arr[i-1];arr[i-1] = arr[largest];arr[largest] = temp;
		swap(arr[i - 1], arr[largest]);
		MaxHeapify(arr, largest, len);
	}
}
void BuildMaxHeap(int* arr, int len) {
	for (int i = len / 2-1; i >= 0; i--) {
		MaxHeapify(arr, i, len);
	}
}
void Heapsort(int* arr, int len) {
	BuildMaxHeap(arr, len);
	
	for (int i = len-1; i > 0; i--) {
		//int temp = arr[i];arr[i] = arr[0];arr[0] = temp;
		swap(arr[0], arr[i]);
		for (int i = 0; i < 10; i++) { cout << arr[i] << "	"; }cout << endl;
		len--;
		MaxHeapify(arr, 0, len);
	}
}
int main() {
	int arr[10] = { 4,1,3,2,16,9,10,14,8,7 };
	Heapsort(arr, 10);
	for (int i = 0; i < 10; i++) {
		cout << arr[i] << "	";
	}
}





以上


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值