要理解什么是堆排序(heapsort)首先要介绍堆,(二叉)堆是这样的一种可以看成近似完全二叉树的数据结构:
采用最大堆,最大堆要满足的要求是对于任意一个节点i中的元素要大于其左孩子和右孩子节点中的元素。这样根节点中所存储的一定是改组元素中的最大元素。如图所示,图(a)表示该种数据结构,图(b)表示实际存储的形式。于是我们对任意节点i,2(i+1)就表示它的左孩子,2(i+1)+1就表示它的右孩子(i从0开始)。
了解了堆的属性后 ,我们就先直观的感受下堆排序的整个流程:第一步:拿到一个带排序的数组A后,先调用BuildMaxHeap将数组A变成一个最大堆,那么此时第一个元素就是最大的,将第一个元素和最后一个元素交换(Swap),然后在对数组A的前len-1(len是数组A的长度)个元素调用MaxHeapify(就是将数组A的前len-1个元素变成一个最大堆);重复该过程就可将数组排好序。
下面是代码和运行结果:
代码分析:函数MaxHeapify假定输入节点的左孩子和右孩子都是一个最大堆,然后将该节点成为
一个最大堆。这样BuildMaxHeap就可以反复调用该函数来实现建立最大堆的功能。HeapSort过程见前文。
在输出中我们可以清晰地看出该函数的运行过程。
总结:堆排序是一种算法复杂度为O(nlgn)的原址的排序算法,使用了一种称之为堆的重要数据
结构。
#include<iostream> using namespace std; void MaxHeapify(int* arr, int i,int len) { i++; int l = 2 * i; int r = 2 * i + 1; int largest = i-1; if (l-1 < len && arr[l-1] > arr[i-1]) { largest = l-1; } if (r -1< len && arr[r-1] > arr[largest]) { largest = r-1; } if (largest != i-1) { //int temp = arr[i-1];arr[i-1] = arr[largest];arr[largest] = temp; swap(arr[i - 1], arr[largest]); MaxHeapify(arr, largest, len); } } void BuildMaxHeap(int* arr, int len) { for (int i = len / 2-1; i >= 0; i--) { MaxHeapify(arr, i, len); } } void Heapsort(int* arr, int len) { BuildMaxHeap(arr, len); for (int i = len-1; i > 0; i--) { //int temp = arr[i];arr[i] = arr[0];arr[0] = temp; swap(arr[0], arr[i]); for (int i = 0; i < 10; i++) { cout << arr[i] << " "; }cout << endl; len--; MaxHeapify(arr, 0, len); } } int main() { int arr[10] = { 4,1,3,2,16,9,10,14,8,7 }; Heapsort(arr, 10); for (int i = 0; i < 10; i++) { cout << arr[i] << " "; } }
以上