Portfolio Selection

Portfolio Selection

选择投资组合的过程可以分为两个阶段。第一阶段从观察和经验开始,以对现有证券的未来表现的信念结束。第二阶段从对未来表现的相关信念开始,以选择投资组合结束。本文关注的是第二个阶段。我们首先考虑投资者确实(或应该)最大化discounted 预期或预期收益的规则。这一规则既被拒绝作为解释的假设,也被拒绝作为指导投资行为的最大值。接下来,我们考虑这样一个规则,即投资者确实(或应该)认为预期收益是一件可取的事情,而收益的方差是一件不可取的事情。这条规则有许多合理的观点,既可以作为投资行为的准则,也可以作为投资行为的假设。我们根据“期望-方差收益”规则,说明了beliefs与投资组合选择之间的几何关系。

关于投资组合选择的一种规则是,投资者确实(或应该)最大化未来the discounted (or capitalized) value。由于未来不确定,因此必须是我们discounted 的“期望”或“期望”回报。可以建议对这类规则进行修改。在希克斯之后,我们可以让 "预期 "收益包括对风险的考虑。2或者,我们可以让特定证券的回报资本化率随风险而变化。

投资者确实(或应该)最大化discounted return的假设(或格言)必须被拒绝。如果我们忽略了市场的不完善性,上述规则绝不意味着有一个多元化的投资组合比所有非多元化的投资组合都要好。无论预期收益是如何形成的;无论对不同的证券使用相同或不同的discount rates;无论这些discount rates是如何决定的或如何随时间变化,上述规则都建议分散投资。该假设意味着投资者将他的所有资金放在具有greatest discounted value的证券上。如果两个或更多的证券具有相同的价值,那么其中的任何一个或任何一个组合都和其他的证券一样好

我们可以从分析上看到这一点:假设有N种证券;让 r i t r_{it} rit是在时间t上投资于证券i的每一美元的预期回报(anticipated return)(无论如何决定);让 d i t d_{it} dit是在时间t上 i t h i^{th} ith证券的回报折算到现在的比率(let d i t d_{it} dit be the rate at which the return on the i t h i^{th} ith security at time t is discounted back to the present)。让Xi为投资于证券i的相对金额。我们不包括卖空,因此 X i ≥ 0 X_i\ge 0 Xi0。那么,discounted投资组合的预期收益为

在这里插入图片描述

R = Σ X i R i R=\Sigma X_iR_i R=ΣXiRi X i X_i Xi R i R_i Ri无关。 X i ≥ 0   a n d   Σ X i = 1 X_i\ge0\ and\ \Sigma X_i=1 Xi0 and ΣXi=1 R R R R i R_i Ri的加权平均。正如在动态情况下,如果投资者希望从投资组合中获得最大的 "预期 "收益,他将把所有的资金放在具有最大预期收益的证券上。有一条规则既意味着投资者应该多样化,也意味着他应该最大化预期收益。该规则规定,投资者确实(或应该)将其资金分散到所有能带来最大预期回报的证券中。

大数法则将保证投资组合的实际收益率与预期收益率几乎相同。这条规则是预期收益率方差规则的一个特例(将在下面介绍)。它假定有一个投资组合既能提供最大的预期收益,又能提供最小的方差,它向投资者推荐这个投资组合。

这种假设,即大数定律适用于证券组合,不能被接受。证券收益之间的相关性太大。多样化不能消除所有的差异。

期望收益最大的投资组合不一定是方差最小的投资组合。有一个比率,投资者可以通过接受方差来获得预期收益,或者通过放弃预期收益来减少方差。

我们看到,预期收益或预期收益规则是不充分的。现在让我们考虑一下预期收益-收益方差(E-V)规则。首先有必要介绍一下数理统计的一些基本概念和结果。然后我们将展示E-V规则的一些含义。之后,我们将讨论其合理性。

在我们的介绍中,我们尽量避免复杂的数学陈述和证明。因此,我们在严谨性和通用性方面付出了一定的代价。这方面的主要限制是 (1) 我们没有对n个证券(security)的情况进行分析推导;相反,我们对3个和4个证券的情况以几何学的方式得出结果。(2)我们假设静态的概率信念(static probability beliefs)。在一般的介绍中,我们必须认识到,各种证券收益率的概率分布是一个时间的函数。作者打算在未来提出消除这些限制的一般数学处理方法。

我们将需要以下数学统计学的基本概念和结果

让Y是一个随机变量。为了简化说明,假设Y可以有有限个值 y 1 , y 2 , . . . , y N y_1,y_2,...,y_N y1,y2,...,yN。让 Y = y 1 Y=y_1 Y=y1的概率为 p 1 p_1 p1; Y = y 2 Y=y_2 Y=y2的概率为 p 2 p_2 p2,以此类推。因此,Y的期望值为

在这里插入图片描述

V是Y与其期望值的平均平方偏差。V是常用的散度测量。也可以用其他的散度测量,例如 σ = V \sigma=\sqrt V σ=V ,或者方差系数the coefficient of variation, σ / E \sigma/E σ/E

假设我们有一些随机变量 : R 1 , . . . , R n :R_1,...,R_n :R1,...,Rn。如果R是 R i R_i Ri的加权和(线性组合)

在这里插入图片描述

那么R也是一个随机变量。例如,R1可能是一个骰子上出现的数字;R2是另一个骰子的数字,而R是这些数字的总和。在这种情况下 n = 2 , a 1 = a 2 = 1 n=2,a_1=a_2=1 n=2,a1=a2=1

对我们来说,了解加权和(R)的期望值和方差如何与 R 1 , . . . , R n R_1,...,R_n R1,...,Rn的概率分布相关是很重要的。我们在下面陈述这些关系;我们建议读者参考任何标准文本进行证明。

加权和的期望值是期望值的加权和。

在这里插入图片描述

加权和的方差并不是那么简单。为了表达它,我们必须定义“协方差”。 R 1 R_1 R1 R 2 R_2 R2的协方差是

在这里插入图片描述

即[(R1与平均值的偏差)乘以(R2与平均值的偏差)]的预期值。一般来说,我们将 R i R_i Ri R j R_j Rj之间的协方差定义为

在这里插入图片描述

加权和的方差为

在这里插入图片描述

让Ri为第i个证券的回报return。让 μ i \mu_i μi R i R_i Ri的期望值; σ i , j \sigma_{i,j} σi,j为协方差。设Xi为投资者的资产中分配给第1种证券的百分比。整个投资组合的收益率(R)为

在这里插入图片描述

Ri(以及随之而来的R)被认为是随机变量。Xi不是随机变量,而是由投资者固定的。由于Xi是百分比,我们有 Σ X i = 1 \Sigma X_i = 1 ΣXi=1 X i ≥ 0 X_i\ge0 Xi0不考虑卖空的情况。

整个投资组合的回报(R)是随机变量的加权和(投资者可以选择权重)。从我们对这种加权和的讨论中可以看出,整个投资组合的预期收益E是

在这里插入图片描述

对于fixed probability beliefs ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j),投资者可以根据其投资组合 X 1 , . . . , X N X_1,...,X_N X1,...,XN的选择选择E和V的各种组合。假设所有可获得的(E,V)组合的集合如图1所示。E-V规则规定,投资者将(或应该)选择产生图中所示有效(E,V)组合的那些投资组合中的一个;i、 e.对于给定的e或更多,最小值为V,对于给定的V或更少,最大值为e。

假设所有可获得的(E,V)组合的集合如图1所示。E-V规则指出,投资者将(或应该)希望选择那些产生图中所示有效的(E,V)组合的投资组合之一;即那些在给定E或更多的情况下具有最小V,在给定V或更少的情况下具有最大E的组合。

在这里插入图片描述

我们可以通过一些技术来计算与给定 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)相关的有效投资组合和有效(E,V)组合的集合。我们将不在此介绍这些技术。然而,我们将从几何角度说明N(可用证券的数量)较小的情况下有效表面的性质。 计算有效的表面可能会有实际的用途。也许有办法,通过结合统计技术和专家的判断,形成合理的概率信念probability beliefs ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)。投资者被告知哪些(E,V)组合是可以实现的,可以说明他想要的。然后,我们可以找到能提供这种所需组合的投资组合。

在以上述方式使用有效表面之前,至少必须满足两个条件。首先,投资者必须希望按照E-V准则行事。第二,我们必须能够得出合理的 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)。我们稍后再谈这些问题。

让我们考虑三种证券的情况。在三种证券情况下,我们的模型简化为

在这里插入图片描述

如果我们在方程(1)和(2)中代入(3’),我们得到E和V关于 X 1 和 X 2 X_1和X_2 X1X2的函数。例如我们发现

在这里插入图片描述

精确的公式在这里不太重要(V的公式在下面给出)。我们可以简单地写

在这里插入图片描述

通过使用关系式(a),(b),(c),我们可以处理二维几何。

可获得的投资组合集合由满足约束(c)和(3’)(或等价地(3)和(4))的所有投资组合组成。 X 1 X_1 X1 X 2 X_2 X2的可实现组合由图2中的三角形abc表示。

在这里插入图片描述

我们将等距曲线定义为具有给定预期收益(expected return)的所有点(投资组合)的集合。类似地,等方差线被定义为具有给定收益方差的所有点(投资组合)的集合。对E和V公式的检验告诉我们等距曲线和等方差曲线的形状。特别地,他们告诉我们,典型的等距曲线是一个平行直线系统;等方差曲线是一个同心椭圆系统(见图2)。例如如果 μ 2 ≠ μ 3 \mu_2\ne\mu_3 μ2=μ3,1‘可以重写为 X 2 = a + b X 1 X_2=a+bX_1 X2=a+bX1

在这里插入图片描述

如果我们改变E,我们改变的是截距,而不是平行线的斜率。

类似地,通过解析几何的一个不太简单的应用,我们可以证实等方差线形成同心椭圆族的论点。系统的“中心”是使V最小化的点。我们将把这个点标为X。它的预期收益和方差我们将标记为E和V。离X越远,方差越大。

更准确地说,如果一条等方差曲线C1比另一条C2更接近X,那么C1的方差比C2小。

借助于上述几何工具,让我们寻找有效集。

X,即等差椭圆系统的中心,可以落在可实现集的内部或外部。图2说明了X落在可达到的集合内的情况。在这种情况下。X是有效的。因为没有其他投资组合的V值和X一样低;因此,没有任何投资组合可以在V值相同或更大的情况下拥有更小的V值(E值相同或更大),或者在V值相同或更小的情况下拥有更大的E值。因为我们有E>E和V<V。

考虑具有给定预期收益率E的所有点;即与E相关的等值线上的所有点。等值线上V取最小值的点是等值线与等值曲线相切的点。

我们称这个点为 X ^ ( E ) \hat X(E) X^(E)。如果我们让E变化, X ^ ( E ) \hat X(E) X^(E)会描出一条曲线。代数考虑(我们在此省略)表明,这条曲线是一条直线。我们将称之为临界线I。临界线通过X,因为这一点使E(X1, Xz)=E的所有点的V最小。从X到临界线穿过可实现集的边界的那段临界线是有效集的一部分。

有效集的其余部分(如图所示)是从d到b的3条直线的线段。b是可达到的最大点E。在图3中,X位于容许区域之外,但临界线切割容许区域。

在这里插入图片描述

有效线从方差最小的可达到点开始(在这种情况下是在Z线上)。它向b移动直到与临界线相交,沿着临界线移动直到与边界相交,最后沿着边界移动到b。

读者可能希望构建和研究以下其他案例: (1) X位于可实现的集合之外,并且临界线没有切断可实现的集合。在这种情况下,有一种证券不能进入任何有效组合。(2) 两个证券具有相同的 μ i \mu_i μi。在这种情况下,等值线与一条边界线平行。可能发生的情况是,具有最大E的有效组合是一个多样化的组合。(3) 只有一个组合是有效的情况。

在4证券的情况下,有效集合与3证券和N证券的情况一样,是一系列相连的线段。有效集合的一端是最小方差的点;另一端是最大预期回报的点(见图4)。

在这里插入图片描述

如图5所示,有效投资组合集合上的E面部分是一系列连接的线段。V-抛物面在有效投资组合集上的截面是一系列连通的抛物线线段。

在这里插入图片描述

如果我们绘制有效投资组合的V与E,我们将再次得到一系列相连的抛物线段(见图6)。对于任意数量的证券,都会得到这个结果。

在这里插入图片描述

出于各种原因,建议使用期望-方差收益规则,既可以作为解释既定投资行为的假设,也可以作为指导自己行为的准则。我们将看到,这条规则更好地解释和指导“投资”与(“投机”行为)的区别。

前面我们否决了预期收益率规则,理由是它从未暗示过多样化的优越性。而预期期望-方差收益规则意味着在广泛的 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j) 范围内的多样化。这并不意味着E-V规则从未暗示不多样化的投资组合的优越性。可以想象,一种证券可能比所有其他证券有极高的收益率和较低的方差;以至于一个特定的不分散的投资组合将提供最大的E和最小的V。

E-V规则导致有效的投资组合,几乎所有的投资组合都是多样化的。

E-V假说不仅意味着分散投资,而且意味着 "正确的 "分散投资的 “正确理由”。投资者不认为分散投资的充分性仅仅取决于所持不同证券的数量。

例如,一个有60种不同铁路证券的投资组合,不会像有一些铁路、一些公共事业、采矿、各种制造业等的相同规模的投资组合那样分散化。原因是同一行业的公司通常比不同行业的公司更有可能在同一时间表现不佳。

同样,在试图使方差变小时,仅仅投资于许多证券是不够的。有必要避免投资于彼此之间具有高协方差的证券。我们应该在不同的行业中进行分散投资,因为不同行业的公司,特别是具有不同经济特征的行业,其协方差要比一个行业内的公司低。

"收益率 "和 "风险 "这两个概念经常出现在金融著作中。通常情况下,如果用 "预期收益率 "或 "预期回报率 "取代 “收益率”,用 "回报率的方差 "取代 “风险”,表面上的含义不会有什么变化。

假设一个投资者在两个投资组合之间进行分散投资(即,如果他把一部分钱放在一个投资组合中,其余的钱放在另一个投资组合中。一个分散投资的例子是购买两家不同投资公司的股票)。)

如果两个原始投资组合的方差相等,那么通常情况下,产生的(复合)投资组合的方差将小于任一原始投资组合的方差。 ???

E-V原则作为投资行为与投机行为的区别规则更为合理。投资组合收益概率分布的第三个矩M3可能与赌博倾向有关。

在这里插入图片描述

也许对于那些认为收益率是好事,风险是坏事,赌博是应该避免的大量投资机构来说,V效率作为一种工作假设和工作格言是合理的。

E-V原则的两种用途表明了这一点。我们可以在理论分析中使用它,也可以在实际选择投资组合中使用它。

为了在选择证券时使用E-V规则,我们必须有程序来寻找合理的 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)。我认为,这些程序应结合统计技术和实践者的判断。我的感觉是,统计计算应被用来得出一组暂定的 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)

然后,应根据正式计算未考虑的因素或细微差别,在增加或减少某些 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)时使用判断。利用这一修正的 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)集,可以计算出有效的E,V组合,投资者可以选择他喜欢的组合,并可以找到产生这种E,V组合的投资组合。

关于暂定 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)的一个建议是使用过去某个时期的观察 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)。我相信可以找到更好的方法,其中考虑到更多的信息。我认为,所需要的基本上是对证券分析的 "概率 "重述。

E,V组合,投资者可以选择他喜欢的组合,并可以找到产生这种E,V组合的投资组合。

关于暂定 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)的一个建议是使用过去某个时期的观察 ( μ i , σ i , j ) (\mu_i,\sigma_{i,j}) (μi,σi,j)。我相信可以找到更好的方法,其中考虑到更多的信息。我认为,所需要的基本上是对证券分析的 "概率 "重述。

在本文中,我们考虑了选择投资组合过程中的第二个阶段。这个阶段从有关证券的相关信念开始,以选择投资组合结束。我们没有考虑第一阶段:在观察的基础上形成相关信念。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值