python数据分析的主要流程-KNIME + Python = 数据分析+报表全流程

Python 数据分析环境

数据分析领域有很多可选方案,例如SPSS傻瓜式分析工具,SAS专业性商业分析工具,R和python这类需要代码编程类的工具。个人选择是python这类,包括pandas,numpy,matplotlib,sklearn,keras。基于jupyter或者zeppelin作为编程界面,可以用python开发出比较清爽的数据分析报告。

总体来说,jupyter notebook编写的分析结果基本上可以满足要求,但是也有些弊端,例如无法做很好的presentation,虽然可以通过convert slides得到比较好的presentation胶片,但是无法展现直观的数据流和数据分析流程。

理想的数据分析应该包括:清晰的数据流和数据分析流程;直观的数据分析结果报告。

经过对多种开源方案的比较,我选择使用knime+python的方案,可以有以下的优点

利用python和相关数据分析库的能力,对数据建模、分析、可视化,这块基于Anaconda;

利用knime的可视化数据流和report design能力,对数据ETL、建模、分析、报告。

knime + python

anaconda建立数据分析环境

一般需要使用到的库包括:pandas,seanborn,numpy,scipy,statsmodel,matplotlib,keras,TensorFlow。

knime建立可视化数据流/report环境

KNIME的发展始于2004年1月,由康斯坦茨大学的软件工程师团队作为专有产品。由Michael Berthold领导的原始开发团队来自硅谷的一家公司,为制药行业提供软件。最初的目标是创建一个模块化,高度可扩展和开放的数据处理平台,从而轻松集成不同的数据加载,处理,转换,分析和可视化探索模块,而不必关注任何特定的应用领域。该平台旨在成为一个协作和研究平台,也应作为各种其他数据分析项目的集成平台。

Knime IDE基于eclipse开发,插件的安装和eclipse一样。我们需要结合knime和python做数据分析,需要安装以下插件:

KNIME Python Integration,安装后可以使用"Python Script’和"Python View’ node

KNIME Report Designer

knime 中“Python Script” node

Python Script node可以处理前一个节点数据,数据名称是input_table,类型是pandas.DataFrame。DataFrame的操作api就是pandans的api。数据处理完后将结果输出,输出的数据是output_table.

举个例子,选择一个PythonScript node之后,右击选择Configure...,进入python代码输入框。

import pandas as pd

df = input_table

df = df[df['gender'] == 'M']

output_table = df

knime中“Python View” node

Python View节点对输入数据做可视化,输出图片,输入数据通用是input_table,可视化可以使用任意的python库,首选当然是Matplotlib。输出的图片需要赋值给变量output_image。举个例子:

import matplotlib.pyplot as plt

from io import BytesIO

df = input_table

df['score'].plot()

# output the image

buffer = BytesIO()

plt.saveFig(buffer, format='svg')

output_image = buffer.getvalue()

knime中“Image to Report” node

Python View节点输出的图片可以作为report的元素,借助“Image to Report”节点可以将图片输出,注意需要重新设置图片大小,默认100x100尺寸太小。

knime中report模块

report模块基于birt,开发界面和BIRT一样。优点是这里能够将knime数据流中的Report节点数据/图片自动引入到report中的“Data set view”。在设计report的时候可以引入图片或者表格数据。

数据分析流程

72806-20180301104843110-470399676.png

BIRT报表

72806-20180301104826601-519409162.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值