AAAI-2025 | 具身智能体如何逛街!FLAME:利用多模态大模型在城市环境中进行视觉语言导航

  • 作者:Yunzhe Xu, Yiyuan Pan, Zhe Liu, Hesheng Wang

  • 单位: 上海交通大学人工智能学院,上海交通大学自动化系

  • 论文标题:FLAME: Learning to Navigate with Multimodal LLM in Urban Environments

  • 论文链接:https://arxiv.org/pdf/2408.11051

  • 代码链接:https://github.com/xyz9911/FLAME

主要贡献

  • 引入FLAME:提出了第一个基于多模态大语言模型(MLLM)的智能体FLAME,用于城市视觉语言导航(VLN)任务。

  • 三阶段调优技术:提出了一种定制的三阶段调优技术,通过合成数据将Flamingo模型适应导航场景,充分释放MLLM的潜力。

  • 实验验证:实验结果表明,FLAME在Touchdown和Map2seq数据集上显著优于SOAT方法,证明了MLLM在复杂导航任务中的潜力。

研究背景

研究问题

论文主要解决的问题是如何在城市环境中利用多模态大模型(MLLMs)进行视觉语言导航(VLN)。

尽管大模型在一般对话场景中表现出色,但在专门的导航任务中表现不佳,与专门的VLN模型相比存在性能差距。

研究难点

  • 信息丢失:将视觉数据转换为语言时,视觉基础模型可能导致信息丢失。

  • 计算资源:处理观察结果需要多次前向传递和大量计算资源。

  • 户外导航挑战:户外导航的轨迹长度更长,难度更大,成功率比室内导航任务低40%。

相关工作

  • 视觉语言导航:大多数进展集中在室内环境,传统VLN智能体缺乏高级决策能力。

  • 多模态大模型:MLLMs在多种任务中展示了多模态推理能力,但在专家导航任务中的通用预训练不足。

  • 数据增强:为了克服导航中的数据稀缺问题,提出了各种数据增强技术,但在户外导航中使用辅助训练数据来定制MLLMs的研究较少。

研究方法

论文提出了FLAME(FLAMingo-Architected Embodied Agent),用于城市VLN任务的多模态大模型。

FLAME 架构

FLAME 基于 Flamingo 架构,利用交叉注意力来处理视觉和文本输入,而不增加上下文长度。为了适应城市 VLN 任务,FLAME 对 Flamingo 进行了两项关键改进:

  • Strided Cross-Attention

    • 为了处理城市 VLN 中的大量观察结果,FLAME 在交叉注意力层中实现了步幅交叉注意力。

    • 这种方法通过减少需要处理的观察数量来优先考虑最近的观察结果,从而提高系统在动态环境中识别重要特征的能力。

  • 动作预测

    • FLAME 根据当前观察、历史观察和指令来预测动作。默认情况下,下一个动作是通过 MLLM 模型生成的。

    • 此外,FLAME 还可以在关键位置(如交叉路口)生成理由,以提高智能体和可解释性。

三阶段调优技术

为了将 Flamingo 适应到城市 VLN 任务,FLAME 提出了一个三阶段调优范式:

  • 单感知调优

    • 在第一阶段,模型在街景描述任务上进行训练,以增强其特征识别能力。

    • 训练目标是通过给定的观察和提示生成准确的描述。

  • 多感知调优

    • 在第二阶段,模型处理序列化的观察结果并执行动作。

    • 通过监督路线总结和模仿损失来训练模型,以生成详细的路线总结和简单的导航指令。

  • 端到端导航调优

    • 在第三阶段,模型在 VLN 数据集上进行端到端微调,以最小化动作预测的损失。

    • 这个阶段的目标是使模型能够在实际导航任务中表现更好。

合成数据生成

为了支持模型的微调,FLAME 使用 LLMs 自动生成街景描述、路线总结和导航理由:

  • 街景描述生成:使用 GPT-4 生成关键位置的街景描述,以确保多样性和准确性。

  • 路线总结生成:构建地标知识图,并使用 GPT-4 生成详细的路线总结和导航指令。

  • 导航理由生成:为 VLN 数据集生成合成理由,以验证智能体的推理能力。通过分割轨迹并检索每个子路线的图像描述和总结来生成理由。

实验设计

实验设置

  • 数据集

    • 实验在两个城市视觉语言导航(VLN)数据集上进行:Touchdown 和 Map2seq。

    • 这两个数据集都在 StreetLearn 环境中进行,分别包含 9,326 和 7,672 个指令-轨迹对。

    • 实验还使用了为前两个训练阶段生成的增强数据集。

  • 基准比较:FLAME 与其他现有的最先进(SOTA)方法进行了比较,评估其在原始数据集上的性能。

评估指标

  • 任务完成率(TC):表示成功样本所占的百分比。

  • 最短路径距离(SPD):计算停止位置到目标的距离。

  • 基于动态时间规整加权成功率(nDTW):评估智能体轨迹与真实轨迹的重叠程度。

  • 推理能力评估:引入了两个新指标:

    • 理由一致性(RC):评估智能体生成的理由与指令的一致性。

    • 理由-动作对齐(RA):评估智能体的动作与其生成的理由的对齐程度。

实现细节

  • 模型实现:FLAME 基于 Otter 和 OpenFlamingo,结合了 CLIP 和 LLaMA。为了适应 CLIP 的输入大小,对全景图进行了裁剪和调整。

  • 训练时间:第一和第二阶段的训练各需 1 小时,导航微调需要 12 小时,在单个 A100 GPU 上进行。

结果与分析

与 SOTA 方法的比较

  • Touchdown 数据集

    • FLAME 在测试集上超越了 Loc4Plan,任务完成率(TC)提高了 7.3%,最短路径距离(SPD)提高了 1.97%。

    • 表明 FLAME 在理解和处理导航指令及环境线索方面具有优势,导致更高的成功率和更好的路径遵循。

  • Map2seq 数据集

    • FLAME 在测试集上超越了 VELMA,TC 提高了 3.74%,nDTW 提高了 5.35%。

    • 突显了多模态大模型(MLLMs)在捕捉综合信息方面的优势,相较于仅使用文本的 LLMs 更具优势。

  • 开源方法的比较

    • 在限制的视场设置下,FLAME 的表现优于其他开源方法,尤其是在非全景视觉输入的情况下。

    • 表明 FLAME 在非全景视觉输入中具有更好的适应性。

推理表现

  • 自洽性方法

    • 通过探索不同的解码路径和温度来评估 FLAME 的推理能力。

    • 结果显示,FLAME 在理由一致性(RC)和理由-动作对齐(RA)方面表现良好,RC 和 RA 分别保持在 80% 和 95% 以上。

  • 采样多样性

    • 较高的温度和更多的解码路径导致性能波动,但总体上增加了采样多样性和更大的解码预算,使得 FLAME 能够生成多样的理由并有效集成推理结果,从而改善决策。

分析

  • 步幅交叉注意力的影响:实验表明,增加步幅大小通常与任务完成率的下降相关,强调了在决策过程中优先考虑当前观察的重要性。默认情况下,FLAME 设置步幅大小为 1。

  • 三阶段调优技术的有效性:通过逐步学习,FLAME 在导航任务中表现出色。未进行分阶段训练的基线模型表现不佳,而实施第一阶段和第二阶段调优后,性能显著提升。

  • 定性分析:通过定性示例展示了 FLAME 的导航能力。FLAME 能够准确识别关键地标并与指令对齐,显示出其在复杂导航任务中的有效性。

总结

论文介绍了FLAME,一种用于城市VLN任务的多模态大模型。

通过三阶段调优技术和合成数据,FLAME在城市VLN任务中取得了最先进的性能。

实验结果和推理性能证明了MLLMs在复杂导航任务中的潜力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值