lintcode 558 · 滑动窗口矩阵的最大值【二维数组前缀和 中等 vip】

文章描述了一种在给定二维矩阵和固定大小窗口的情况下,计算每次窗口移动所获得和的最大值的方法。使用了前缀和的概念,通过动态调整窗口范围计算差分来求解。
摘要由CSDN通过智能技术生成

题目

https://www.lintcode.com/problem/558/description

给一个 n * m 的一个矩阵, 以及一个移动的矩阵窗口 (大小为 k * k), 移动窗口从左上角到右下角, 找到每一次移动窗口得到的和中的最大值, 返回 0, 如果结果不存在


样例
样例 1:

输入:[[1,5,3],[3,2,1],[4,1,9]],k=2
输出:13
解释:
最初窗口位于矩阵的起点如下
	[
	  [|1, 5|, 3],
	  [|3, 2|, 1],
	  [4, 1, 9],
	]
,得到和为 11;

然后窗口向前移动一步
	[
	  [1, |5, 3|],
	  [3, |2, 1|],
	  [4, 1, 9],
	]
,得到和为 11;

然后窗口继续移动一步
	[
	  [1, 5, 3],
	  [|3, 2|, 1],
	  [|4, 1|, 9],
	]
,得到和为 10;

然后窗口继续移动一步
	[
	  [1, 5, 3],
	  [3, |2, 1|],
	  [4, |1, 9|],
	]
,得到和为 13;
所以最终,从所有窗口中得到最大值为13。
样例 2:

输入:[[10],k=1
输出:10
解释:
滑动窗口的大小为 1*1,返回 10

前置知识

  二维数组前缀和公式: 
	presum[i][j] = 
	matrix[i - 1][j - 1] 
	+ presum[i - 1][j] 
	 + presum[i][j - 1] 
	 - presum[i - 1][j - 1];

答案

public class Solution {
    /**
     * @param matrix: an integer array of n * m matrix
     * @param k: An integer
     * @return: the maximum number
     */
    public int maxSlidingMatrix(int[][] matrix, int k) {
     //二维数组前缀和
        if (matrix == null || matrix[0].length == 0) return -1;
        int n = matrix.length, m = matrix[0].length;
        if (n < k || m < k) return 0;

        int[][] presum = new int[n + 1][m + 1];


        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                presum[i][j] = matrix[i - 1][j - 1] + presum[i - 1][j] + presum[i][j - 1] - presum[i - 1][j - 1];
            }
        }

        int ans = Integer.MIN_VALUE;
        for (int i = k; i <= n; i++) {
            for (int j = k; j <= m; j++) {
                int diff = presum[i][j] + presum[i - k][j - k];

                diff -= presum[i - k][j];
                diff -= presum[i][j - k];

                ans = Math.max(ans, diff);

            }
        }

        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵长辉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值