[coursera/SequenceModels/week3]Sequence models & Attention mechanism (summary&question)

3.1 Various sequence to sequence architectures

3.1.1 Basic Models




3.1.2  Picking the most likely sentence

conditional probability


pick most likely sentence


Greedy search(not useful)


3.1.3 Beam Search


example



3.1.4  Refinements to Beam Search


3.1.5 Error analysis in beam search



3.1.6 Attention model


3.2 Speech recognition-Audio data



Q&A

9.B

10. A

1. Question 1

Consider using this encoder-decoder model for machine translation.

This model is a “conditional language model” in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

True

Question 2

2. Question 2

In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

Question 3

3. Question 3

In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

False

Question 4

4. Question 4

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of ythat maximizes P(yx).

On a dev set example, given an input audio clip, your algorithm outputs the transcript y^= “I’m building an A Eye system in Silly con Valley.”, whereas a human gives a much superior transcript y= “I’m building an AI system in Silicon Valley.”

According to your model,

P(y^x)=1.09107

P(yx)=7.21108

Would you expect increasing the beam width B to help correct this example?

No, because P(yx)P(y^x) indicates the error should be attributed to the search algorithm rather than to the RNN.

Yes, because P(yx)P(y^x) indicates the error should be attributed to the RNN rather than to the search algorithm.

Yes, because P(yx)P(y^x) indicates the error should be attributed to the search algorithm rather than to the RNN.

Question 5

5. Question 5

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, P(yx)>P(y^x). This suggest you should focus your attention on improving the search algorithm.

False.

Question 6

6. Question 6

Consider the attention model for machine translation.

Further, here is the formula for α<t,t>.

Which of the following statements about α<t,t> are true? Check all that apply.

Question 7

7. Question 7

The network learns where to “pay attention” by learning the values e<t,t>, which are computed using a small neural network:

We can't replace s<t1> with s<t> as an input to this neural network. This is because s<t>depends on α<t,t> which in turn depends on e<t,t>; so at the time we need to evalute this network, we haven’t computed s<t> yet.

False

Question 8

8. Question 8

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

The input sequence length Tx is small.

Question 9

9. Question 9

Under the CTC model, identical repeated characters not separated by the “blank” character (_) are collapsed. Under the CTC model, what does the following string collapse to?

__c_oo_o_kk___b_ooooo__oo__kkk

cookbook

cook book

coookkboooooookkk

Question 10

10. Question 10

In trigger word detection, x<t> is:

Features of the audio (such as spectrogram features) at time t.

The t-th input word, represented as either a one-hot vector or a word embedding.

Whether someone has just finished saying the trigger word at time t.




评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值