akshare库 | A股股票价格指数数据获取

本文介绍如何使用Python的akshare库抓取A股市场数据,包括股票数据总貌、实时行情、历史行情等,并探讨了股票数据复权的重要性及方法。此外,还提供了次新股和股票指数的实时数据抓取示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

腾讯课堂 | Python网络爬虫与文本分析(戳一戳)~~

A股

函数类型功能
ak.stock_sse_summary()数据总貌当日上海证券交易所-股票数据总貌
ak.stock_szse_summary()数据总貌当日深圳证券交易所-股票数据总貌
ak.stock_zh_a_spot()实时行情单次返回所有 A 股上市公司的实时行情数据
ak.stock_zh_a_daily(symbol, start_date, end_date, adjust)历史行情数据某股票的历史行情数据

数据总貌

数据源

  • 上交所: http://www.sse.com.cn/market/stockdata/statistic/

  • 深交所: http://www.szse.cn/market/overview/index.html

代码

  • ak.stock_sse_summary() 当前交易日(周六周日以周五收盘为准)上海证券交易所-股票数据总貌

  • ak.stock_szse_summary() 当前交易日(周六周日以周五收盘为准)深圳证券交易所-股票数据总貌

import akshare as ak

#当前上交所交易日
ak.stock_sse_summary()

typeitemnumber
0总貌上市公司/家1774
1总貌总股本/亿股(份)42333.54
2总貌总市值/亿元449338
3总貌平均市盈率/倍16.53
0总貌上市股票/只1817
1总貌流通股本/亿股(份)37055.18
2总貌流通市值/亿元372768.37
0主板上市公司/家1575
1主板总股本/亿股41719.30
2主板总市值/亿元417542.76
3主板平均市盈率/倍15.70
0主板上市股票/只1618
1主板流通股本/亿股36894.08
2主板流通市值/亿元363550.23
0科创板上市公司/家199
1科创板总股本/亿股(份)614.24
2科创板总市值/亿元31795.24
3科创板平均市盈率/倍93.84
0科创板上市股票/只199
1科创板流通股本/亿股(份)161.10
2科创板流通市值/亿元9218.14
#当前上交所交易日
ak.stock_szse_summary()

证券类别数量(只)成交金额(元)成交量总股本总市值流通股本流通市值
0股票2284464774868848.3036234796444222159665542727065137543076.86181555584215621045462688142.41
1主板A股46097759499936.1799281476268157863372167864786582883.697153609517286943989894131.95
2主板B股4686268155.78256280421262676781847596578540.851249663954347063848276.06
3中小板960201352604926.081618324155495904904500111307409526445.997516396551638669554702599.64
4创业板A股818165576495830.27100977792224341345053927845344855206.333360585957225384854243134.76
5基金55113625235438.858488174062178495219217241727724562.97178495219217241727724562.97
6ETF10011654359536.03629887509797160183202162829410392.1297160183202162829410392.12
7LOF250733576824.219056277514129917213040431564774.314129917213040431564774.31
8封闭式基金1552757.105900811761500762244048.50811761500762244048.50
9分级基金2001236746321.5012836653143922410238537704505348.033922410238537704505348.03
10债券7175137138889356.151267097444



11债券现券660029113574087.95184874494036839310540657.2117730355013001823573039491.96
12债券回购13105459181000.001055429160



13ABS5622566134268.2026793790488157240326484463227241.83488157240326484463227241.83
14期权108244155964.00374868



股市实时行情

  • ak.stock_zh_a_spot() 单次返回所有 A 股上市公司的实时行情数据

注意: 重复运行本函数会被新浪暂时封 IP, 建议增加时间间隔

new_df = ak.stock_zh_a_spot()

new_df.to_csv('data/沪深实时行情数据.csv')
new_df.head()
Please wait for a moment: 100%|██████████| 52/52 [00:29<00:00,  1.75it/s]

symbolcodenametradepricechangechangepercentbuysellsettlementopenhighlowvolumeamountticktimeperpbmktcapnmcturnoverratio
0sh600000600000浦发银行10.17-0.07-0.68410.1610.1710.2410.2410.2510.0547336450.0479183315.015:00:005.2150.5822.985112e+072.985112e+070.16127
1sh600004600004白云机场14.99-0.12-0.79414.9915.0015.1115.1515.2814.958879917.0133815978.015:00:1831.2291.9353.547711e+063.101911e+060.42912
2sh600006600006东风汽车6.350.010.1586.346.356.346.256.666.1477593723.0501942922.015:00:0028.7071.6361.270000e+061.270000e+063.87969
3sh600007600007中国国贸12.92-0.10-0.76812.9212.9313.0212.9913.0512.881529840.019789398.015:00:0013.3201.6681.301409e+061.301409e+060.15188
4sh600008600008首创股份3.04-0.01-0.3283.033.043.053.053.053.0232314837.098099591.015:00:1818.0311.4472.231540e+062.231540e+060.44022

股票历史行情数据

  • ak.stock_zh_a_daily(symbol, start_date, end_date, adjust) 某股票的历史行情数据(考虑复权)

  • ak.stock_zh_a_cdr_daily(symbol, start_date, end_date) 某股票的历史行情数据(不考虑复权)


  • symbol 股票代码,symbol='sh600000'; 股票代码可以在 ak.stock_zh_a_spot() 中获取

  • start_date 开始查询的日期;start_date='20201103';

  • end_date 结束查询的日期;start_date='20201106';

  • adjust 默认返回不复权的数据; qfq: 返回前复权后的数据; hfq: 返回后复权后的数据; hfq-factor: 返回后复权因子; hfq-factor: 返回前复权因子

#万科A 后复权
sz000002 = ak.stock_zh_a_daily(symbol = 'sz000002', 
                               start_date = '20201103', 
                               end_date = '20201116', 
                               adjust = 'hfq')
sz000002

openhighlowclosevolumeoutstanding_shareturnover
date






2020-11-034010.194031.673982.984014.4861766600.09.714315e+090.006358
2020-11-044017.354045.993995.874033.1045499180.09.714315e+090.004684
2020-11-054074.644204.974054.594189.21120119594.09.714315e+090.012365
2020-11-064202.104235.044157.704219.2985288066.09.714315e+090.008780
2020-11-094256.534276.584180.624235.0481118542.09.714315e+090.008350
2020-11-104253.664312.384182.054200.6761377060.09.714315e+090.006318
2020-11-114206.404332.434189.214263.6988521186.09.714315e+090.009112
2020-11-124262.264269.424207.834262.2645905719.09.714315e+090.004726
2020-11-134233.614252.234129.064160.5766013466.09.714315e+090.006795
2020-11-164209.264225.024153.414182.0551657638.09.714315e+090.005318
#九号公司 后复权
sh689009 = ak.stock_zh_a_cdr_daily(symbol='sh689009', 
                                   start_date='20201103', 
                                   end_date='20201116')

sh689009

openhighlowclosevolume
date




2020-11-0356.5059.5553.3657.3925121445.0
2020-11-0457.4557.8051.9054.4020846450.0
2020-11-0555.9565.2854.6061.0028843507.0
2020-11-0659.8068.6059.4868.6023162768.0
2020-11-0970.5071.6863.5068.0422494134.0
2020-11-1068.0070.7065.1167.9315952778.0
2020-11-1165.8065.9155.7056.0023125126.0
2020-11-1256.0061.6655.0458.8918607788.0
2020-11-1358.0863.8855.5061.1814904776.0
2020-11-1662.1873.4262.1873.4217134827.0

股票数据复权

为何要复权?

由于股票存在配股、分拆、合并和发放股息等事件,会导致股价出现较大的缺口。若使用不复权的价格处理数据、计算各种指标,将会导致它们失去连续性,且使用不复权价格计算收益也会出现错误。为了保证数据连贯性,常通过前复权和后复权对价格序列进行调整。

前/后复权

前复权:保持当前价格不变,将历史价格进行增减,从而使股价连续。前复权用来看盘非常方便,能一眼看出股价的历史走势,叠加各种技术指标也比较顺畅,是各种行情软件默认的复权方式。这种方法虽然很常见,但也有两个缺陷需要注意。

  • 为了保证当前价格不变,每次股票除权除息,均需要重新调整历史价格,因此其历史价格是时变的。这会导致在不同时点看到的历史前复权价可能出现差异。

  • 对于有持续分红的公司来说,前复权价可能出现负值。

后复权:保证历史价格不变,在每次股票权益事件发生后,调整当前的股票价格。后复权价格和真实股票价格可能差别较大,不适合用来看盘。其优点在于,可以被看作投资者的长期财富增长曲线,反映投资者的真实收益率情况。

在量化投资研究中普遍采用后复权数据

次新股

次新股的内涵是伴随着时间的推移而相应变化的。一般来说一个上市公司在上市后的一年之内如果还没有分红送股,或者股价未被市场主力明显炒作的话,基本上就可以归纳为次新股板块。

在临近年末的时候,次新股由于上市的时间较短,业绩方面一般不会出现异常的变化,这样年报的业绩风险就基本不存在,可以说从规避年报地雷的角度来说,次新股是年报公布阶段相对最为安全的板块。

ak.stock_zh_a_new() 单次返回所有次新股行情数据

stock_zh_a_new = ak.stock_zh_a_new()
stock_zh_a_new

symbolcodenameopenhighlowvolumeamountmktcapturnoverratio
0sh601187601187厦门银行12.57013.17012.350746322419452618943.409753e+0628.27913
1sh601568601568北元集团10.68010.69010.6009001838956365523.831389e+062.49282
2sh601686601686友发集团18.52018.53016.670515032918943884332.409527e+0636.26992
3sh601995601995中金公司63.12064.50063.1202061433013162691633.074480e+077.92010
4sh605007605007五洲特纸26.50027.74026.25088114732369721851.094027e+0622.02318
.................................
56sz300912300912N凯龙52.11062.00052.1101868876710574077396.723678e+0570.35515
57sz300913300913N兆龙46.00049.00042.610189838478463496785.243000e+0565.35439
58sz300915300915C海融114.500119.900112.02030612543541366856.882000e+0520.40836
59sz300916300916C朗特131.310132.450128.00018607982417490295.488562e+0517.47228
60sz300999300999金龙鱼70.68073.50070.3503827311627591332093.891618e+0710.72862

61 rows × 10 columns

实时股票指数

股票指数数据是从新浪财经获取的数据, 单次返回所有指数的实时行情数据

ak.stock_zh_index_spot()

stock_zh_index_spot = ak.stock_zh_index_spot()
stock_zh_index_spot

symbolnametradepricechangechangepercentbuysellsettlementopenhighlowvolumeamountcodeticktime
0sh000001上证指数3418.1683-26.413-0.767003444.58143446.64783449.57823414.515722663706830202769933600000114:35:44
1sh000002A股指数3582.8628-27.724-0.768003610.58673612.75683615.82473579.018022638114730131767498300000214:35:44
2sh000003B股指数241.8948-0.266-0.11000242.1604242.1342243.1541241.85841637638583953400000314:35:44
3sh000004工业指数2947.2927-9.719-0.329002957.01172961.39352968.18592944.600613718045820555576757600000414:35:44
4sh000005商业指数3301.6900-29.175-0.876003330.86473331.38143338.83473298.9413197244112595036666000000514:35:44
................................................
574sz399998中证煤炭1321.328-12.350-0.9260.0000.0001333.6781337.8861353.3521320.545958502075611803684939999814:35:48
575sz980001
1651.641-17.535-1.0510.0000.0001669.1761672.0311672.0311645.79520252512356268854575898000114:35:46
576sz980017
9298.40538.8130.4190.0000.0009259.5929449.9739503.9289292.8646456873532662857326598001714:35:46
577sz980023
2909.856-12.650-0.4330.0000.0002922.5062925.4692929.0472898.4357358923991564549194798002314:35:46
578sz980068
2067.003-5.000-0.2410.0000.0002072.0032069.6112075.7332063.1851085307561835951480898006814:35:46

579 rows × 15 columns

近期文章Python网络爬虫与文本数据分析
bsite库 | 采集B站视频信息、评论数据

爬虫实战 | 采集&可视化知乎问题的回答
pdf2docx库 | 转文件格式,支持抽取文件中的表格数据
rpy2库 | 在jupyter中调用R语言代码
tidytext | 耳目一新的R-style文本分析库
reticulate包 | 在Rmarkdown中调用Python代码
plydata库 | 数据操作管道操作符>>
plotnine: Python版的ggplot2作图库

七夕礼物 | 全网最火的钉子绕线图制作教程

读完本文你就了解什么是文本分析

文本分析在经管领域中的应用概述  
综述:文本分析在市场营销研究中的应用

plotnine: Python版的ggplot2作图库
小案例: Pandas的apply方法  
stylecloud:简洁易用的词云库 
用Python绘制近20年地方财政收入变迁史视频  
Wow~70G上市公司定期报告数据集

漂亮~pandas可以无缝衔接Bokeh  
YelpDaset: 酒店管理类数据集10+G  


“分享”和“在看”是更好的支持!

代码链接:https://pan.baidu.com/s/12peR3mrLAG5wHwdk-vcWSA  密码:41d4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值