2021暑期 | 结构模型、Stata实证前沿、Python数据挖掘暑假工作坊
一、项目意义
情感分析大多是基于情感词典对文本数据进行分析,所以情感词典好坏、是否完备充足是文本分析的关键。
目前常用的词典都是基于形容词,有
知网HowNet
大连理工大学情感本体库
但是形容词类型的词典在某些情况下不适用,比如
华为手机外壳采用金属制作,更耐摔
由于句子中没有形容词,使用形容词情感词典计算得到的情感得分为0。但是耐摔这个动词具有正面积极情绪,这个句子的情感的分理应为正
可见能够简单快速构建不同领域(手机、汽车等)的情感词典十分重要。但是人工构建太慢,如果让机器帮我们把最有可能带情感的候选词找出来,人工再去筛选构建词典,那该多好啊。那么如何快速自动的新建或者扩充词表呢?
二、构建思路
共现法,参考https://github.com/liuhuanyong/SentimentWordExpansion
词向量,参考https://github.com/MS20190155/Measuring-Corporate-Culture-Using-Machine-Learning
2.1 共现法扩充词表
计算机领域有一个算法叫做SO_PMI,互信息。简单的讲个体之间不是完全独立的,往往物以类聚,人以群分。如果我们一开始设定少量的
初始正面种子词
初始负面种子词
程序会按照“物以类聚人以群分”的思路,
根据初始正面种子词找到很多大概率为正面情感的候选词
根据初始负种子词找到很多大概率为负面情感的候选词
这个包原始作者刘焕勇,项目地址https://github.com/liuhuanyong/SentimentWordExpansion 我仅仅做了简单的封装
2.2 词向量扩充词表
共现法,词语之间的独立无相关性依然很强,依然认为词语与词语是不可以比较的。其实词语里潜藏着很多线索,例如中国传统文化中的金木水火土、性别(阴阳)等信息。例如