腾讯数据分析岗面经,面试时死板背答案不可取~

年前,技术群组织了一场数据类的技术&面试讨论会,邀请了一些大厂同学和23年参加招聘的同学来分享:新人如何入门数据和算法岗,面经/面试题分享、大厂在算法场景的落地项目及经验分享等热门话题。

今天我整理一位小伙伴的面经验,分享给大家,希望对后续找工作的有所帮助。如果你想加入我们的讨论群或者希望要更详细的资料,文末加入。喜欢本文记得收藏、关注、点赞 。

一面

  1. 自我介绍

  2. 自己的tech stack是怎么样的?

  3. 自己进行数据分析的方法论是什么?

  4. 缺失值如何处理?

  5. 手撕两道巨简单的SQL

  6. 介绍一下朴素贝叶斯分类

  7. 用过什么爬虫?(项目里提到)

  8. SQL里面各种类型的join有什么区别 ?

  9. 介绍一下马尔可夫模型

腾讯一面感觉挺简单的,基本就是统计基础➕SQL,和面试官聊的很嗨

二面

  1. 自我介绍

  2. 项目介绍,跟着项目扣了一些无关痛痒的点

  3. 特征工程有哪些方法?

  4. 手撕四道依然巨简单的SQL

  5. 智力题,给你一组数,填下一个数(开放答案,面试官讲考察数字敏感度的)

    条件概率题

    “人患癌症的概率为 1/1000。假设有一台癌症诊断仪 S1,通过对它以往的诊断记录的分析,如果患者确实患有癌症它的确诊率为 90%,如果患者没有癌症,被诊断成癌症的概率是 10%。某人在被诊断为癌症后,他真正患癌症的概率为()”

    我当时简单估算了一下答案是1%左右,我觉得不可能这么低啊,我就又算了一遍,发现我的逻辑并没有出错啊,我最后没办法,我就和面试官说我的解题思路,然后说我的最后答案是大概1%左右,我觉得这个答案肯定有问题,但我现在想不出来到底哪里出了问题。面试官笑了一下,说今天就到这,还有什么要问他的

    我后面下来查了一下,这题最后的正确答案就是1/112,我真是。这题真是有意思,合着病人都被确诊了,结果只有1%的概率是真的癌症。

    二面给我的感觉也是相当基础,本来以为会问一些机器学习算法相关的东西,结果都没有问。

三面

这也是传说中的总监面

  1. 自我介绍

  2. 项目介绍

  3. MAE 和 RMSE 作为metric的应用场景是什么

  4. Xgboost为什么效果好

  5. 模型复杂度是什么东西

  6. 你想要什么样工作

  7. 你在团队中会扮演什么样的角色

相比上两轮的面试官,总监直接就是全程冷漠,我感觉我自己当时太过于想要表现自己了,我在介绍自己项目的时候,屡次打断我,尝试讲一些我觉得他可能会感兴趣的点,结果他一直不说话,导致我最后看起来就像是对项目不了解,东拉西扯,没有逻辑,哎,自己把自己搞了。哎,和大家一起共勉吧。

技术交流

独学而无优则孤陋而寡闻,技术要学会交流、分享,不建议闭门造车。

建立了技术交流与面试交流群,面试真题、答案获取,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:Python学习与数据挖掘,后台回复:交流
方式②、添加微信号:dkl88194,备注:交流

文章精选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值