腾讯算法岗面试,问的贼细!

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学。

针对算法类的技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

合集:《大模型面试宝典》(2024版) 正式发布!


暑期实习基本结束了,校招即将开启。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们


上周,我们一位星球成员面试完了腾讯 AI Lab NLP 算法岗。

该球友是很久之前投的,突然打电话让在官网投递约面,有点出乎意料,感觉很慌。测评做了接近俩小时。

一面

时间:1h+

  • 自我介绍

  • 项目介绍,问的很细,过程中不停打断提问

  • 算法竞赛项目,整体数据处理流程、模型效果评估方法、心得体会

八股

  • 简单介绍一下 BERT 和 Transformer

  • Attention 和 self-attention 有什么区别?

  • Transformer 的复杂度

  • Bert 用的什么位置编码,为什么要用正弦余弦来做位置编码?还知道其他哪些位置编码?

  • 除了 bert 还做过哪些模型的微调?

  • 为什么现在的大模型大多是 decoder-only 的架构?

  • 讲一下生成式语言模型的工作机理

  • 用过 LoRA 吗?讲一下原理?

算法题

  • 最大子段和

  • 跳台阶

其他

  • 问后续安排和实习时长,以及反问

二面

  • 自我介绍

  • 项目深挖

八股

  • Transformer 结构和 LSTM 的区别和优势,Transformer 怎么体现时序信息?

  • Transformer Encoder 和 Decoder 的输入输出和结构

  • BatchNorm 更多用在视觉上,LayerNorm 更多用在语言上,为什么

  • 有没 chatGLM,LLaMA 等部署、微调经历?

  • 有没有了解过大模型加速推理?

  • 讲一下 Flash Attention?

算法题

先说思路再写代码

  • 1、数组中的第K个最大元素

  • 2、数组 nums 表示若干个区间的集合,请你合并所有重叠的区间,并返回一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间。

  • 输入: nums =[[1,3],[2,6],[8,10],[15,18]]

  • 输出:[[1,6],[8,10],[15,18]]

技术交流

独学而无优则孤陋而寡闻,技术要学会交流、分享,不建议闭门造车。

建立了技术交流与面试交流群,面试真题、答案获取,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:Python学习与数据挖掘,后台回复:加群
方式②、添加微信号:dkl88194,备注:加群

文章精选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值