节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学。
针对算法类的技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。
暑期实习基本结束了,校招即将开启。
不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。
最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。
喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们
上周,我们一位星球成员面试完了腾讯 AI Lab NLP 算法岗。
该球友是很久之前投的,突然打电话让在官网投递约面,有点出乎意料,感觉很慌。测评做了接近俩小时。
一面
时间:1h+
-
自我介绍
-
项目介绍,问的很细,过程中不停打断提问
-
算法竞赛项目,整体数据处理流程、模型效果评估方法、心得体会
八股
-
简单介绍一下 BERT 和 Transformer
-
Attention 和 self-attention 有什么区别?
-
Transformer 的复杂度
-
Bert 用的什么位置编码,为什么要用正弦余弦来做位置编码?还知道其他哪些位置编码?
-
除了 bert 还做过哪些模型的微调?
-
为什么现在的大模型大多是 decoder-only 的架构?
-
讲一下生成式语言模型的工作机理
-
用过 LoRA 吗?讲一下原理?
算法题
-
最大子段和
-
跳台阶
其他
- 问后续安排和实习时长,以及反问
二面
-
自我介绍
-
项目深挖
八股
-
Transformer 结构和 LSTM 的区别和优势,Transformer 怎么体现时序信息?
-
Transformer Encoder 和 Decoder 的输入输出和结构
-
BatchNorm 更多用在视觉上,LayerNorm 更多用在语言上,为什么
-
有没 chatGLM,LLaMA 等部署、微调经历?
-
有没有了解过大模型加速推理?
-
讲一下 Flash Attention?
算法题
先说思路再写代码
-
1、数组中的第K个最大元素
-
2、数组 nums 表示若干个区间的集合,请你合并所有重叠的区间,并返回一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间。
-
输入: nums =[[1,3],[2,6],[8,10],[15,18]]
-
输出:[[1,6],[8,10],[15,18]]
技术交流
独学而无优则孤陋而寡闻,技术要学会交流、分享,不建议闭门造车。
建立了技术交流与面试交流群,面试真题、答案获取,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。
方式①、微信搜索公众号:Python学习与数据挖掘,后台回复:加群
方式②、添加微信号:dkl88194,备注:加群