题目
You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
Input: (2 -> 4 -> 3) + (5 -> 6 -> 4)
Output: 7 -> 0 -> 8
分析
因为数字按照逆序存储,显然题中所给的示例中两数分别为:342,465。而342+465=807。因此最终返回数807的逆向存储列表7->0->8。
刚开始在写这道题的时候,想当然地认为两个链表的长度相同。而这恰恰是我们思维的一个误区。题中并没有提及两链表的长度,因此有可能是不同的,这就需要事先判断指针是否指向null,即链表是否将为空,若为空则建立一个新的存储数字“0”的节点。
解决了这个问题,这道题就很容易Pass了。我们先建立一个新列表result(将结果存储在其中),然后遍历两个给出列表中的对应节点并做加法运算。值得注意的是,两数相加若大于10,我们将利用取模(%)运算得到本位结果,利用除法(/)运算得到进位结果保存在carry中并在下一位的加法运算过程中加上carry。如果两链表的所有非空节点都已遍历完,且carry>0时,则需要新创建一个节点以保存运算结果的最高位。
解答
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
ListNode* m=l1;
ListNode* n=l2;
ListNode* result=new ListNode(0);
ListNode* cur=result;
int carry=0;
int sum=0;
while(m!=NULL || n!=NULL){
if(m==NULL) {
m=new ListNode(0);
}
if(n==NULL) {
n=new ListNode(0);
}
sum=(m->val)+(n->val)+carry;
carry=sum/10;
//cout<<carry<<" "<<sum<<endl;
cur->next=new ListNode(sum%10);
cur=cur->next;
if(m!=NULL) m=m->next;
if(n!=NULL) n=n->next;
sum=0;
}
if(carry>0){
cur->next=new ListNode(carry);
}
return result->next;
}
};
不难得出,该算法的复杂度为O(max{l1.size(), l2.size()})