第一章《绪论》学习笔记

上数据结构这门课前,总以为这门课是和上学期学C++一样的——那还不简单,一样都是编程么,直到真正开始学才知道根本不是那么回事,远远没有学C++那样的轻松。

仇老师让我们写笔记,我觉得这是很有必要的,因为很多东西不是说你理解了就会用,况且有一部分还不能理解,好记性不如烂笔头吧。至于整理到博客上也算是再复习一遍了。

废话不多说了,进入正题:

1.程序设计的实质是什么?

    数据表示:将数据存储在计算机(内存)中
    数据处理:处理数据,设计方案(算法)。

    数据结构问题起源于程序设计。

2. 计算机求解问题:
    问题→抽象出问题的模型→求模型的解
    问题——数值问题、非数值问题
    数 值 问 题→数学方程
    非数值问题→数据结构。

3.围棋19*19=361所以就有2^361种下法,所以人机对弈问题的实质就是人与对弈规则作斗争。

4.非数值问题的数据组织和处理主要内容有:

    逻辑结构,存储结构,算法,数据处理技术。

5.数据:所有能输入到计算机中并能被计算机程序识别和处理的符号集合。
      数值数据:整数、实数等
      非数值数据:图形、图象、声音、文字等
     数据元素:数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。

     数据项:构成数据元素的不可分割的最小单位。

1.3  数据结构的基本概念

1.数据、数据元素、数据项之间的关系:

    包含关系:数据由数据元素组成,数据元素由数据项组成。

     数据元素是讨论数据结构时涉及的最小数据单位,其中的数据项一般不予考虑。

2.数据结构:相互之间存在一定关系的数据元素的集合。按照视点的不同,数据结构分为逻辑结构和存储结构。
逻辑结构:指数据元素之间逻辑关系的整体。

数据结构从逻辑上分为四类:
⑴ 集合:数据元素之间就是
     “属于同一个集合” ;
⑵ 线性结构:数据元素之间
    存在着一对一的线性关系;
⑶ 树结构:数据元素之间存在
    着一对多的层次关系;
⑷ 图结构:数据元素之间存在
    着多对多的任意关系。

通常有两种存储结构:
1. 顺序存储结构:用一组连续的存储单元依次存储数据元素,数据元素之间的逻辑关系由元素的存储位置来表示。(占据存储空间少)
2. 链接存储结构:用一组任意的存储单元存储数据元素,数据元素之间的逻辑关系用指针来表示 。(占据存储空间多,但是很灵活)

1.3.2抽象数据类型

1. 数据类型(Data Type):一组值的集合以及定义于这个值集上的一组操作的总称。
      例如:C++中的整型变量 
2. 抽象(Abstract):抽出问题本质的特征而忽略非本质的细节。
     例如: 地图、驾驶汽车
3. 抽象数据类型(Abstract Data Type,ADT):一个数据结构以及定义在该结构上的一组操作的总称。

数据的操作:插入,删除,修改,检索,排序。

1.4 算法及算法分析

算法的相关概念
1.算法(Algorithm):是对特定问题求解步骤的一种描述,是指令的有限序列。
2. 算法的五大特性:
⑴ 输入:一个算法有零个或多个输入。
⑵ 输出:一个算法有一个或多个输出。
⑶ 有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
⑷ 确定性:算法中的每一条指令必须有确切的含义,对于相同的输入只能得到相同的输出。
⑸ 可行性:算法描述的操作可以通过已经实现的基本操作执行有限次来实现。
算法的描述方法——自然语言

优点:容易理解
缺点:冗长、二义性
使用方法:粗线条描述算法思想
注意事项:避免写成自然段

使用方法:粗线条描述算法思想。

算法的描述方法——流程图

优点:流程直观
缺点:缺少严密性、灵活性
使用方法:描述简单算法
注意事项:注意抽象层次
算法的描述方法——程序设计语言

优点:能由计算机执行
缺点:抽象性差,对语言要求高
使用方法:算法需要验证
注意事项:将算法写成子函数

伪代码(Pseudocode):介于自然语言和程序设计语言之间的方法,它采用某一程序设计语言的基本语法,操作指令可以结合自然语言来设计。
优点:表达能力强,抽象性强,容易理解
使用方法:7 ± 2
1.4  算法及算法分析
度量算法效率的方法:
 事后统计:将算法实现,测算其时间和空间开销。
缺点:⑴ 编写程序实现算法将花费较多的时间和精力;
            ⑵ 所得实验结果依赖于计算机的软硬件等环境因素。
 事前分析:对算法所消耗资源的一种估算方法

算法分析(Algorithm Analysis):对算法所需要的计算机资源——时间和空间进行估算。
      时间复杂性(Time Complexity)
      空间复杂性(Space Complexity)

问题规模:输入量的多少。
基本语句:是执行次数与整个算法的执行次数成正比的操作指令

算法分析——大O符号
定义  若存在两个正的常数c和n0,对于任意n≥n0,都有T(n)≤c×f(n),则称T(n)=O(f(n))

定理:若A(n)=amnm+am-1nm-1++a1n+a0是一个m次多项式,则A(n)=O(nm)。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值