上数据结构这门课前,总以为这门课是和上学期学C++一样的——那还不简单,一样都是编程么,直到真正开始学才知道根本不是那么回事,远远没有学C++那样的轻松。
仇老师让我们写笔记,我觉得这是很有必要的,因为很多东西不是说你理解了就会用,况且有一部分还不能理解,好记性不如烂笔头吧。至于整理到博客上也算是再复习一遍了。
废话不多说了,进入正题:
1.程序设计的实质是什么?
数据表示:将数据存储在计算机(内存)中
数据处理:处理数据,设计方案(算法)。
数据结构问题起源于程序设计。
2. 计算机求解问题:
问题→抽象出问题的模型→求模型的解
问题——数值问题、非数值问题
数 值 问 题→数学方程
非数值问题→数据结构。
3.围棋19*19=361所以就有2^361种下法,所以人机对弈问题的实质就是人与对弈规则作斗争。
4.非数值问题的数据组织和处理主要内容有:
逻辑结构,存储结构,算法,数据处理技术。
5.数据:所有能输入到计算机中并能被计算机程序识别和处理的符号集合。
数值数据:整数、实数等
非数值数据:图形、图象、声音、文字等
数据元素:数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。
数据项:构成数据元素的不可分割的最小单位。
1.3 数据结构的基本概念
1.数据、数据元素、数据项之间的关系:
包含关系:数据由数据元素组成,数据元素由数据项组成。
数据元素是讨论数据结构时涉及的最小数据单位,其中的数据项一般不予考虑。
2.数据结构:相互之间存在一定关系的数据元素的集合。按照视点的不同,数据结构分为逻辑结构和存储结构。
逻辑结构:指数据元素之间逻辑关系的整体。
数据结构从逻辑上分为四类:
⑴ 集合:数据元素之间就是
“属于同一个集合” ;
⑵ 线性结构:数据元素之间
存在着一对一的线性关系;
⑶ 树结构:数据元素之间存在
着一对多的层次关系;
⑷ 图结构:数据元素之间存在
着多对多的任意关系。
通常有两种存储结构:
1. 顺序存储结构:用一组连续的存储单元依次存储数据元素,数据元素之间的逻辑关系由元素的存储位置来表示。(占据存储空间少)
2. 链接存储结构:用一组任意的存储单元存储数据元素,数据元素之间的逻辑关系用指针来表示 。(占据存储空间多,但是很灵活)
1.3.2抽象数据类型
1. 数据类型(Data Type):一组值的集合以及定义于这个值集上的一组操作的总称。
例如:C++中的整型变量
2. 抽象(Abstract):抽出问题本质的特征而忽略非本质的细节。
例如: 地图、驾驶汽车
3. 抽象数据类型(Abstract Data Type,ADT):一个数据结构以及定义在该结构上的一组操作的总称。
数据的操作:插入,删除,修改,检索,排序。
1.4 算法及算法分析
算法的相关概念
1.算法(Algorithm):是对特定问题求解步骤的一种描述,是指令的有限序列。
2. 算法的五大特性:
⑴ 输入:一个算法有零个或多个输入。
⑵ 输出:一个算法有一个或多个输出。
⑶ 有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
⑷ 确定性:算法中的每一条指令必须有确切的含义,对于相同的输入只能得到相同的输出。
⑸ 可行性:算法描述的操作可以通过已经实现的基本操作执行有限次来实现。
算法的描述方法——自然语言
优点:容易理解
缺点:冗长、二义性
使用方法:粗线条描述算法思想
注意事项:避免写成自然段
使用方法:粗线条描述算法思想。
算法的描述方法——流程图
优点:流程直观
缺点:缺少严密性、灵活性
使用方法:描述简单算法
注意事项:注意抽象层次
算法的描述方法——程序设计语言
优点:能由计算机执行
缺点:抽象性差,对语言要求高
使用方法:算法需要验证
注意事项:将算法写成子函数
伪代码(Pseudocode):介于自然语言和程序设计语言之间的方法,它采用某一程序设计语言的基本语法,操作指令可以结合自然语言来设计。
优点:表达能力强,抽象性强,容易理解
使用方法:7 ± 2
1.4 算法及算法分析
度量算法效率的方法:
事后统计:将算法实现,测算其时间和空间开销。
缺点:⑴ 编写程序实现算法将花费较多的时间和精力;
⑵ 所得实验结果依赖于计算机的软硬件等环境因素。
事前分析:对算法所消耗资源的一种估算方法
算法分析(Algorithm Analysis):对算法所需要的计算机资源——时间和空间进行估算。
时间复杂性(Time Complexity)
空间复杂性(Space Complexity)
问题规模:输入量的多少。
基本语句:是执行次数与整个算法的执行次数成正比的操作指令
算法分析——大O符号
定义 若存在两个正的常数c和n0,对于任意n≥n0,都有T(n)≤c×f(n),则称T(n)=O(f(n))
定理:若A(n)=amnm+am-1nm-1++a1n+a0是一个m次多项式,则A(n)=O(nm)。