Numpy的Matrix常用功能(2)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

一、 Numpy的反矩阵和矩阵幂;
二、 Numpy的矩阵方程求解和Det;

一、 Numpy的反矩阵和矩阵幂

1.反矩阵和矩阵相乘等于单位矩阵,矩阵A的逆矩阵(有时称为倒数矩阵)是矩阵A ^(-1), 使得 AA ^(-1)= I,(I)是单位矩阵。

2.矩阵幂 对于方矩阵𝐴和正整数𝑘,通过反复将此矩阵自身相乘k次数来定义;

二、 Numpy的矩阵方程求解和Det

1.Solve功能用于求解矩阵对应的解。

2.Det行列式不是个"式"!它是个数!不要被行列式里的"式"字误导了,矩阵的行列式不是一个
式子,它是一个数字,是一个按行列式计算规则(只是乘和加运算)计算出来的数值。

3.Det这个数值有什么意义?对于二阶矩阵,它就是一个面积、对于三阶矩阵,它就是一个体积、 对于n维矩阵,它就是n维立体的体积。

三、实操案例

实验1 实战Numpy的反矩阵

逻辑:
在这里插入图片描述

公式:(除法变成乘法)
在这里插入图片描述

import  numpy as np
a= np.matrix('1,2;3,4')
print(a)
b = np.linalg.inv(a)  #反矩阵
print(b)

在这里插入图片描述
实验2 实战Numpy的矩阵幂

import  numpy as np
a= np.array([[1,2],[3,4]])
print(a)

b = np.linalg.matrix_power(a,2)  # 矩阵幂
print(b)
print(a.dot(a))                  # 函数是矩阵乘,自己乘以自己

b = np.linalg.matrix_power(a,0)  # 矩阵幂 0次方,等于1
print(b)

b = np.linalg.matrix_power(a,-1)  # 矩阵幂 负一 次方,与反矩阵一致。
print(b)

print(a.dot(b))                   # 矩阵与自己的负一次方相乘,结果为单位矩阵

在这里插入图片描述

实验3 实战Numpy的solve求解矩阵解

import  numpy as np
a= np.array([[3,1],[1,2]])
b = np.array([9,8])
c = np.linalg.solve(a,b)
print(c)

在这里插入图片描述

import  numpy as np
a= np.array([[3,1,5],[1,2,4],[4,6,3]])
b = np.array([100,90,80])
c = np.linalg.solve(a,b)
print(c)

在这里插入图片描述

实验4 实战Numpy的Det的计算

import  numpy as np
a= np.array([[0,4],[4,0]])
print(np.linalg.det(a))    # 二维求面积,负号代表方向

在这里插入图片描述

import  numpy as np
a= np.array([[0,0,4],[4,0,0],[0,4,0]])
print(np.linalg.det(a))    # 三维求体积

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值