参考资料:
http://www.sohu.com/a/338406719_823210
https://blog.csdn.net/wgc0802402/article/details/97293852
https://zhuanlan.zhihu.com/p/65650998
参考代码:
https://github.com/gjy3035/C-3-Framework
论文
2019年:
1、论文:DSSInet Crowd Counting with Deep Structured Scale Integration Network
代码: https://github.com/Legion56/Counting-ICCV-DSSINet
2。2019.3 Crowd Counting Using Scale-Aware Attention Networks
https://arxiv.org/pdf/1903.02025.pdf
代码:暂无
3. 2019.8,28 Multi-Level Bottom-Top and Top-Bottom Feature Fusion for Crowd Counting
网址: https://arxiv.org/pdf/1908.10937.pdf
4。cvpr 2019 论文:Context-Aware Crowd Counting,
代码: https://github.com/weizheliu/Context-Aware-Crowd-Counting
2017年
1、2017.2.8 MULTI-SCALE CONVOLUTIONAL NEURAL NETWORKS FOR CROWD COUNTING

本文汇总了近年来关于密集人群检测与计数的论文资源,包括2019年和2017年的研究,如DSSInet、Scale-Aware Attention Networks等。并提供了相关代码实现和开源数据集,如ShanghaiTech、UCSD、Mall等,这些数据集用于训练和评估深度学习模型。此外,还讨论了传统基于回归的方法与深度学习方法,特别是利用多尺度特征和密度图的CNN模型,如MCNN、CSRNet等。当前面临的挑战在于如何在密集人群中精确区分个体特征和提升模型的聚焦能力。
最低0.47元/天 解锁文章
283

被折叠的 条评论
为什么被折叠?



