密集人群检测与计数论文与开源数据

本文汇总了近年来关于密集人群检测与计数的论文资源,包括2019年和2017年的研究,如DSSInet、Scale-Aware Attention Networks等。并提供了相关代码实现和开源数据集,如ShanghaiTech、UCSD、Mall等,这些数据集用于训练和评估深度学习模型。此外,还讨论了传统基于回归的方法与深度学习方法,特别是利用多尺度特征和密度图的CNN模型,如MCNN、CSRNet等。当前面临的挑战在于如何在密集人群中精确区分个体特征和提升模型的聚焦能力。
摘要由CSDN通过智能技术生成

参考资料:

http://www.sohu.com/a/338406719_823210

https://blog.csdn.net/wgc0802402/article/details/97293852

https://zhuanlan.zhihu.com/p/65650998

参考代码:

https://github.com/gjy3035/C-3-Framework

论文

2019年:

1、论文:DSSInet Crowd Counting with Deep Structured Scale Integration Network

论文地址:http://openaccess.thecvf.com/content_ICCV_2019/papers/Liu_Crowd_Counting_With_Deep_Structured_Scale_Integration_Network_ICCV_2019_paper.pdf

代码: https://github.com/Legion56/Counting-ICCV-DSSINet

2。2019.3 Crowd Counting Using Scale-Aware Attention Networks

https://arxiv.org/pdf/1903.02025.pdf

代码:暂无

3. 2019.8,28 Multi-Level Bottom-Top and Top-Bottom Feature Fusion for Crowd Counting

网址: https://arxiv.org/pdf/1908.10937.pdf

4。cvpr 2019 论文:Context-Aware Crowd Counting,

论文地址:http://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_Context-Aware_Crowd_Counting_CVPR_2019_paper.pdf

代码: https://github.com/weizheliu/Context-Aware-Crowd-Counting

2017年

1、2017.2.8 MULTI-SCALE CONVOLUTIONAL NEURAL NETWORKS FOR CROWD COUNTING

https://arxiv.org/pdf/1702.02359.pdf

代码:https://github.com/Ling-Bao/ms

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值