tf.nn.embedding_lookup

embedding_lookup常用于NLP中将one-hot编码转换为对应的向量编码。
embedding_lookup(
     params,  
# embedding_params 对应的转换向量
     ids,     
# inputs_ids,标记着要查询的id
     partition_strategy=
'mod',   #分割方式
     name=
None,
     validate_indices=
True, # deprecated
     max_norm=
None
)
用法举例:
import tensorflow as tf
import numpy as np
embedding_param=np.array([[1,2,3,0.1],[4,5,6,0.2],[7,8,9,0.3]])#定义一个pXq的矩阵,3行4列的矩阵
input_ids=np.array([0,2])
input_ids2=np.array([[0],[1]])#要转化的矩阵为mXn
input_embedding = tf.nn.embedding_lookup(embedding_param, input_ids)#根据input_ids中的元素值对应取出嵌入矩阵的元素
input_embedding2 = tf.nn.embedding_lookup(embedding_param, input_ids2)#若要转换的向量是一个矩阵mXn,则转换后的矩阵为多维矩阵,维度为mxnxq
with tf.Session() as sess:
    print(sess.run(input_embedding))#这里将嵌入矩阵的第0行,第2行元素取出来[[ 1.   2.   3.   0.1]
                                                                    #[ 7.   8.   9.   0.3]]
    print(sess.run(input_embedding2).shape)#(2, 2, 4)
    print(sess.run(input_embedding2))#[[[ 1.   2.   3.   0.1]
                                       #[ 7.   8.   9.   0.3]]
                                    #[[ 4.   5.   6.   0.2]
                                      #[ 7.   8.   9.   0.3]]]
    
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值