调和数

调和(级)数可以指跟约数和有关的整数欧尔调和数。在数学上,第n个调和数是首n个正整数的倒数和,即

H_n= 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} =\sum_{k=1}^n \frac{1}{k}

它也等于这些自然数的调和平均值的倒数的n倍。它可以推广到正整数的倒数的之和,即H_n^{(m)}=\sum_{k=1}^n \frac{1}{k^m}

 

调和数的性质

根据定义,调和数满足递推关系

H_{n+1} = H_{n} + \frac{1}{n+1}

它也满足恒等式

\sum_{k=1}^n H_k = (n+1) H_n - n

计算

对于第n项调和数,有以下公式

H_n = \int_0^1 \frac{1 - x^n}{1 - x}\,dx.

设:x = 1 - u\,\!,由此得到

\begin{align} H_n &= \int_0^1 \frac{1 - x^n}{1 - x}\,dx \\ &=-\int_1^0\frac{1-(1-u)^n}{u}\,du \\ &= \int_0^1\frac{1-(1-u)^n}{u}\,du \\ &= \int_0^1\left[\sum_{k=1}^n(-1)^{k-1}\binom nk u^{k-1}\right]\,du \\ &= \sum_{k=1}^n (-1)^{k-1}\binom nk \int_0^1u^{k-1}\,du \\ &= \sum_{k=1}^n(-1)^{k-1}\frac{1}{k}\binom nk . \end{align}

 

对于调和数H_n,当n不是太大时,可以直接计算。

当n特别大时,可以进行估算。

因为\lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n\right) = \gamma,

由此得到

H_n \sim \ln{n}+\gamma

当n越大时,估算越精确。

更精确的估算是

H_n \sim \ln{n}+\gamma+\frac{1}{2n}-\sum_{k=1}^\infty \frac{B_{2k}}{2k n^{2k}}=\ln{n}+\gamma+\frac{1}{2n}-\frac{1}{12n^2}+\frac{1}{120n^4}-\cdots,

其中B_k是第k项伯努利数

 

由估算看来,调和数是发散的,即: Hn 在n趋于无穷时没有极限

很早就有数学家研究,比如中世纪后期的数学家Oresme在1360年就证明了这个级数是发散的。他的方法很简单:

1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+...

1/2+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+...

注意后一个级数每一项对应的分数都小数调合级数中每一项,而且后面级数的括号中的数值和都为1/2,这样的1/2有无穷多个,所以后一个级数是趋向无穷大的,进而调合级数也是发散的。

 

广义调和数

广义调和数满足

H_\alpha = \int_0^1\frac{1-x^\alpha}{1-x}\,dx\, .

由此,我们得到

H_{\frac{3}{4}} = \tfrac{4}{3}-3\ln{2}+\tfrac{\pi}{2}
H_{\frac{2}{3}} = \tfrac{3}{2}(1-\ln{3})+\sqrt{3}\tfrac{\pi}{6}
H_{\frac{1}{2}} = 2 -2\ln{2}
H_{\frac{1}{3}} = 3-\tfrac{\pi}{2\sqrt{3}} -\tfrac{3}{2}\ln{3}
H_{\frac{1}{4}} = 4-\tfrac{\pi}{2} - 3\ln{2}
H_{\frac{1}{6}} = 6-\tfrac{\pi}{2} \sqrt{3} -2\ln{2} -\tfrac{3}{2} \ln{3}
H_{\frac{1}{8}} = 8-\tfrac{\pi}{2} - 4\ln{2} - \tfrac{1}{\sqrt{2}} \left\{\pi + \ln\left(2 + \sqrt{2}\right) - \ln\left(2 - \sqrt{2}\right)\right\}
H_{\frac{1}{12}} = 12-3\left(\ln{2}+\tfrac{\ln{3}}{2}\right)-\pi\left(1+\tfrac{\sqrt{3}}{2}\right)+2\sqrt{3}\ln \left (\sqrt{2-\sqrt{3}} \right )

对于任意两个正整数p和q,并且p<q,我们有

H_{\frac{p}{q}} = \frac{q}{p} +2\sum_{k=1}^{\lfloor\frac{q-1}{2}\rfloor} \cos(\frac{2 \pi pk}{q})ln({\sin (\frac{\pi k}{q})})-\frac{\pi}{2}cot(\frac{\pi p}{q})-ln({2q})

微积分

对于每一个大于0的x,有

H_{x} =  x \sum_{k=1}^\infty \frac{1}{k(x+k)}\, .

由此,得

\int_0^1H_{x}\,dx = \gamma\, ,

对于每一个n,有

\int_0^nH_{x}\,dx = \ln{(n!)}+n\gamma\, .

其他数列

根据定义,其他类似于调和数的数列有以下计算方法:

\sum_{k=1}^n \frac{1}{k} = \psi (n - 1) + \gamma

\sum_{k=0}^n \frac{1}{2k + 1} = \frac{1}{2} \left[\psi \left(n + \frac{3}{2}\right) + \gamma \right] + \ln{2}

\sum_{k=1}^n \frac{1}{2k} = \frac{H_n}{2}

转载于:https://www.cnblogs.com/yaoyueduzhen/p/4340140.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值