调和级数之和

http://patmusing.blog.163.com/blog/static/135834960201132073659862/

1 什么是调和级数?
形如

调和级数之和 - 玄机逸士 - 玄机逸士博客
 

的级数称为调和级数(还可以推广到等差数列的倒数之和)。它是P-级数(自然数数列的整数p次幂的倒数之和)的特例。

2Euler(欧拉)1734年,利用Newton<流数法>一书中写到的结果:

调和级数之和 - 玄机逸士 - 玄机逸士博客

得到:

调和级数之和 - 玄机逸士 - 玄机逸士博客

于是:

调和级数之和 - 玄机逸士 - 玄机逸士博客

代入x=1,2,...,n,就给出:

调和级数之和 - 玄机逸士 - 玄机逸士博客
调和级数之和 - 玄机逸士 - 玄机逸士博客

......

调和级数之和 - 玄机逸士 - 玄机逸士博客

相加,就得到:

调和级数之和 - 玄机逸士 - 玄机逸士博客
调和级数之和 - 玄机逸士 - 玄机逸士博客

n趋于无穷大时,γ(n)收敛为常数,记成γ.
欧拉当时近似地计算得到0.577218,1761年又计算到第16位。

1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并进一步计算之。其部分数值:0.57721566490153286060651209....
这个数一般称作欧拉常数,目前没有公认的成果判定该数是否为无理数。

3)中世纪后期的数学家Oresme1360年就证明了这个级数是发散的。他的方法很简单:

调和级数之和 - 玄机逸士 - 玄机逸士博客
显然后者为无数个 1/2 的和,是发散的。
可以证明当 p>1 时, p- 级数却是收敛的。
<think>好的,用户想知道如何用C++计算调和级数。首先,我需要明确调和级数的定义。调和级数是指$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$,对吧?所以基本思路是循环累加每个倒数。 接下来,用户可能需要的是具体的代码实现。我应该先写出一个简单的循环结构,从1到n,每次加上1/i。不过要注意数据类型的问题,比如用浮点数来存储结果,否则整数除法会导致错误。 然后,考虑到当n很大时,可能会出现精度问题。比如,如果n非常大,单精度浮点数可能不够,需要用double类型。另外,还要提醒用户注意n的取值范围,避免溢出或者计算时间过长。 用户提供的引用中有提到调和级数在算法题中的应用,比如优质数对的问题。可能需要说明调和级数在算法中的常见用途,比如复杂度分析或者某些数学计算场景。 示例代码部分应该简单明了,比如一个函数接受n作为参数,返回累加的结果。测试一下示例,比如n=5,结果应该是大约2.28333。同时,提醒用户关于精度的问题,可能需要使用高精度库或者处理大数情况。 用户可能还会关心性能优化,比如预先计算存储调数,或者并行计算,但针对一般情况,简单的循环应该足够了。此外,如果用户需要处理非常大的n,可能需要介绍分块计算或近似公式,比如使用自然对数加上欧拉-马歇罗尼常数来近似。 最后,根据引用中的问题,生成相关的问题,比如调和级数的应用、优化方法或者数学性质,这样用户可以有进一步的学习方向。</think>### 如何用C++计算调和级数 调和级数定义为: $$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$ 以下是C++实现方法及示例代码: --- #### 实现步骤 1. **输入验证**:确保输入的$n$是正整数。 2. **循环累加**:使用浮点数类型(如`double`)存储结果,避免整数除法导致的精度丢失。 3. **返回结果**:输出调和级数的值。 --- #### 示例代码 ```cpp #include <iostream> using namespace std; double harmonic_number(int n) { if (n <= 0) return 0; // 输入验证 double sum = 0.0; for (int i = 1; i <= n; ++i) { sum += 1.0 / i; // 浮点除法 } return sum; } int main() { int n = 5; cout << "H_" << n << " = " << harmonic_number(n) << endl; return 0; } ``` **输出**: ```plaintext H_5 = 2.28333 ``` --- #### 关键注意事项 1. **精度问题**:当$n$极大时(如$n > 10^6$),浮点数可能因精度限制产生误差。若需要高精度计算,需使用高精度库(如GMP)或分段计算[^3][^4]。 2. **时间复杂度**:直接循环的时间复杂度为$O(n)$,适用于大多数场景。若需频繁调用,可预计算并缓存结果。 3. **数学优化**:调和级数的近似公式为$H_n \approx \ln(n) + \gamma$($\gamma$为欧拉-马歇罗尼常数,约0.5772),适用于快速估算。 --- #### 调和级数的应用场景 1. **算法复杂度分析**:如快速排序的平均时间复杂度推导[^1]。 2. **数学问题**:如计算概率、数论中的分布问题[^3]。 3. **编程题目**:如统计满足特定条件的数对数量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值