http://patmusing.blog.163.com/blog/static/135834960201132073659862/
(1) 什么是调和级数?
形如
的级数称为调和级数(还可以推广到等差数列的倒数之和)。它是P-级数(自然数数列的整数p次幂的倒数之和)的特例。
(2)Euler(欧拉)在1734年,利用Newton在<流数法>一书中写到的结果:
得到:
于是:
代入x=1,2,...,n,就给出:
......
相加,就得到:
当n趋于无穷大时,γ(n)收敛为常数,记成γ.
欧拉当时近似地计算得到0.577218,1761年又计算到第16位。
1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并进一步计算之。其部分数值:0.57721566490153286060651209....
这个数一般称作欧拉常数,目前没有公认的成果判定该数是否为无理数。
(3)中世纪后期的数学家Oresme在1360年就证明了这个级数是发散的。他的方法很简单:
可以证明当 p>1 时, p- 级数却是收敛的。