调和级数之和

http://patmusing.blog.163.com/blog/static/135834960201132073659862/

1 什么是调和级数?
形如

调和级数之和 - 玄机逸士 - 玄机逸士博客
 

的级数称为调和级数(还可以推广到等差数列的倒数之和)。它是P-级数(自然数数列的整数p次幂的倒数之和)的特例。

2Euler(欧拉)1734年,利用Newton<流数法>一书中写到的结果:

调和级数之和 - 玄机逸士 - 玄机逸士博客

得到:

调和级数之和 - 玄机逸士 - 玄机逸士博客

于是:

调和级数之和 - 玄机逸士 - 玄机逸士博客

代入x=1,2,...,n,就给出:

调和级数之和 - 玄机逸士 - 玄机逸士博客
调和级数之和 - 玄机逸士 - 玄机逸士博客

......

调和级数之和 - 玄机逸士 - 玄机逸士博客

相加,就得到:

调和级数之和 - 玄机逸士 - 玄机逸士博客
调和级数之和 - 玄机逸士 - 玄机逸士博客

n趋于无穷大时,γ(n)收敛为常数,记成γ.
欧拉当时近似地计算得到0.577218,1761年又计算到第16位。

1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并进一步计算之。其部分数值:0.57721566490153286060651209....
这个数一般称作欧拉常数,目前没有公认的成果判定该数是否为无理数。

3)中世纪后期的数学家Oresme1360年就证明了这个级数是发散的。他的方法很简单:

调和级数之和 - 玄机逸士 - 玄机逸士博客
显然后者为无数个 1/2 的和,是发散的。
可以证明当 p>1 时, p- 级数却是收敛的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值