【dp-关于决策点】[Lydsy12月赛] BZOJ5124波浪序列 BZOJ5125小Q的书架

其实本来是不想写这篇博文的,但是5124这题没见过想写,单独写又有点短,于是乎多写一个凑数。
还有下面的原题地址是没有题面的,题面在这里

BZOJ5124波浪序列

【题目】
原题地址
给定两个 X X 维向量序列a[1,n],b[1,m],求有多少个序列 f,g f , g 满足 1f1<f2<...<fkn,1g1<g2<...<gkm 1 ≤ f 1 < f 2 < . . . < f k ≤ n , 1 ≤ g 1 < g 2 < . . . < g k ≤ m afi=bfi,[af1,af2,...,afk] a f i = b f i , [ a f 1 , a f 2 , . . . , a f k ] 是波浪的(波浪指对于每个非两端 i i 满足ai1<ai>ai+1 ai1>ai<ai+1 a i − 1 > a i < a i + 1

【题目分析】
显然是dp,但是没有见过,不会优化。

【解题思路】
首先有一个很显然的dp方法,我们令 fi,j,k f i , j , k 表示只考虑 a[1..i]b[1..j] a [ 1.. i ] 和 b [ 1.. j ]
选择的两个子序列结尾分别是 aibj a i 和 b j ,上升下降状态为 k k 的方案数。
那么我们有fi,j,k=fx,y,1k,其中 x<iy<j x < i , y < j 。暴力转移的复杂度是 O(kn2m2) O ( k n 2 m 2 ) 的,显然不能接受。

我们可以考虑将决策点转移的方案数先dp掉,转移后面我们就可以用 O(1) O ( 1 ) 进行转移。
那么令 gi,y,k g i , y , k 表示从 fx,y,k f x , y , k 作为决策点出发,当前要更新的是 i i 的方案数,
hi,j,k表示从 fx,y,k f x , y , k 作为决策点出发,已经经历了 g g 的枚举,当前更新的是j的方案数。
转移的话则是要么更新,要么将 ij i 或 j 枚举到 i+1j+1 i + 1 以 及 j + 1
因为每次只有一个变量在动,所以另一个变量可以表示上一个位置的值,可以表示上一个位置的值,方便判断上升还是下降。
这样做的时间复杂度就可以优化到 O(knm) O ( k n m )

【参考代码】

#include<bits/stdc++.h>
using namespace std;

const int N=2005;
const int M=7;
const int mod=998244353;

int n,m,ks,ans;
int a[N][M],b[N][M],f[N][N][2],g[N][N][2];

bool equal(int *x,int *y)
{
    for(int i=1;i<=ks;++i)
        if(x[i]^y[i])
            return 0;
    return 1;
}

bool bigger(int *x,int *y)
{
    for(int i=1;i<=ks;++i)
        if(x[i]<=y[i])
            return 0;
    return 1;
}

bool smaller(int *x,int *y)
{
    for(int i=1;i<=ks;++i)
        if(x[i]>=y[i])
            return 0;
    return 1;
}

int main()
{
    freopen("BZOJ5124.in","r",stdin);
    freopen("BZOJ5124.out","w",stdout);

    scanf("%d%d",&ks,&n);
    for(int i=1;i<=n;++i)
        for(int j=1;j<=ks;++j)
            scanf("%d",&a[i][j]);
    scanf("%d",&m);
    for(int i=1;i<=m;++i)
        for(int j=1;j<=ks;++j)
            scanf("%d",&b[i][j]);

    for(int i=1;i<=n;++i)
        for(int j=1;j<=m;++j)
            for(int k=0;k<2;++k)
            {
                if(equal(a[i],b[j]))
                {
                    int t=g[i][j][k^1];
                    if(!k)
                        (t+=1)%=mod;
                    (ans+=t)%=mod;
                    (f[i+1][j][k]+=t)%=mod;
                }
                if(f[i][j][k])
                {
                    (f[i+1][j][k]+=f[i][j][k])%=mod;
                    if(!k)
                    {
                        if(bigger(a[i],b[j]))
                            (g[i][j+1][k]+=f[i][j][k])%=mod;
                    }
                    else
                    {
                        if(smaller(a[i],b[j]))
                            (g[i][j+1][k]+=f[i][j][k])%=mod;
                    }
                }
                if(g[i][j][k])
                    (g[i][j+1][k]+=g[i][j][k])%=mod;
            }
    printf("%d\n",ans);

    return 0;
}

BZOJ5125小Q的书架

【题目】
原题地址
给定一个序列 a a ,现在将序列分成k段,每一段的代价是这个区间逆序对的个数,问分割后的最小代价。

【题目分析】
显然是个决策单调性dp,我就不平行四边形优化了,直接分治好了。

【解题思路】
首先显然对于连续一段排序的代价就是这段逆序对的个数,然后我们可以dp,设 fi,j f i , j 表 示 将 [1,i] 分 成 j$个连续段的最小代价即可。
这个dp显然又满足决策单调性,那么具有决策单调性的dp,可以直接平行四边形优化来做,当然我们很常见的还是分治求解。
用BIT维护一下区间逆序对个数即可。
你还可以选择用可持久化分块来达到更优的时间复杂度

【参考代码】

#include<bits/stdc++.h>
#define lowbit(x) (x&(-x))
using namespace std;

const int N=4e4+10;
int n,m,L,R,now;
int a[N],tr[N],f[N],g[N];

inline void _reset()
{
    memcpy(g,f,sizeof(g));
    memset(f,0x3f,sizeof(f));
    memset(tr,0,sizeof(tr));
    L=1;R=now=0;
}

inline int query(int x)
{
    int ret=0;
    for(;x;x-=lowbit(x))
        ret+=tr[x];
    return ret; 
}

inline void update(int x,int v)
{
    for(;x<=n;x+=lowbit(x))
        tr[x]+=v;
}

inline void change(int l,int r)
{
    while(R<r)
        now+=(R-L+1-query(a[R+1])),update(a[++R],1);
    while(L<l)
        now-=query(a[L]-1),update(a[L++],-1);
    while(L>l)
        now+=query(a[L-1]-1),update(a[--L],1);
    while(R>r)
        now-=(R-L+1-query(a[R])),update(a[R--],-1);
}

inline void solve(int l,int r,int dl,int dr)
{
    int mid=(l+r)>>1,dm=dl;
    for(int i=dl;i<=min(dr,mid-1);++i)
    {
        change(i+1,mid);
        int t=g[i]+now;
        if(t<f[mid])
            f[mid]=t,dm=i;
    }
    if(l<mid)
        solve(l,mid-1,dl,dm);
    if(r>mid)
        solve(mid+1,r,dm,dr);
}

int main()
{
    freopen("BZOJ5125.in","r",stdin);
    freopen("BZOJ5125.out","w",stdout);

    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i)
    {
        scanf("%d",&a[i]);
        update(a[i],1);
        f[i]=f[i-1]+i-query(a[i]);
    }
    for(int i=2;i<=m;++i)
    {
        _reset();
        solve(i,n,i-1,n);
    }
    printf("%d\n",f[n]);

    return 0;
}

【总结】
关于决策点的dp真的是有很多玄学的优化姿势qwq。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值