创业板ETF调参,最优参数年化19.2%。

原创内容第699篇,专注量化投资、个人成长与财富自由。

上周发了一个策略:基于backtrader实现人工智能LOF的择时,optstrategy实现最优参数搜索(年化从9%提升至15.4%)

星球里有同学问我,为何选择人工智能LOF,是有什么深意吗?言下之意是你不会挑一个本身就涨得好的吧?

其实就是随手挑。或者这么多当下人工智能很火吧,选择一个好的ETF总没有错。

为避免误会,咱们就从传统宽基来看参数调优过程。

创业板的动量策略:

import sys

from matplotlib import rcParams

rcParams['font.family'] = 'SimHei'
import backtrader as bt
import pandas as pd


class roc_trend(bt.Strategy):
    # 参数定义
    params = dict(
        period=20,  # 动量周期
        upper=8,
        lower=0,
    )

    def __init__(self):
        self.roc = bt.indicators.ROC(self.data, period=self.p.period)

    def next(self):
        if not self.position:  # not in the market
            if self.roc[0] > self.p.upper / 100.0:
                self.order_target_percent(self.data, 0.99)  # enter long
                # self.buy()  # enter long

        elif self.position.size > 0 and self.roc[0] < self.p.lower / 100.0:  # in the market & cross to the downside
            self.close()  # close long position


from backtrader_extends.engine import Engine

symbol = '159915.SZ'
e = Engine(symbols=[symbol])

if __name__ == '__main__':
    e.run_strategy(roc_trend,period=20,upper=8,lower=-0)
    # e.optstrategy(roc_trend, period=range(6, 30, 2), upper=range(1, 10, 1), lower=range(-5, 0, 1))
    e.show_result_empyrical()

年化17.5%:

图片

图片

之前的参数设定为(20,8, 0)已是比较优的参数。

经过充分调优参数,最优参数为:(20,3,-2),年化收益19.2%。

图片

图片

咱们的模板里我已经带了多线程调参,所以单标的择时的话,性能还是可以的。当然决定你需要搜寻的参数空间。

代码下载:AI量化实验室——2024量化投资的星辰大海

图片

AI量化实验室 星球,已经运行三年多,1200+会员。

quantlab代码交付至6.X版本,含几十个策略源代码,因子表达式引擎、遗传算法(Deap)因子挖掘引等,支持backtrader和bt引擎,每周五迭代一次,代码和数据在星球全部开源。

图片

作者:AI量化实验室(专注量化投资、个人成长与财富自由)

当下调侃最令人无力的一句话:“读了那么多书,懂那么多道理,却过不好这一生“。 

这里潜台词是自己已经很努力了,就怪外界环境,或者运气不好,出身不好等等。

这句话看似很在理,实则有根本性的逻辑错误。 

读书,懂道理是向在归因,你希望自己成长。过不过得好这一生,即所谓成功,是向外归因,就赖他们。 

听了几本书,刷了几个短视频,觉得自己好努力,看了几个观点,觉得自己天上地下无所不知了。

——这里读了和读懂是有区别的,看起来懂和真的懂,懂了会用,会用真的去用是天差地别的。 

我确实见过读了不少历史书的爱好者,但他读的都是故事,你要聊某一个细节,正史野史他张口就来。

但他说不出所以然,没有规律总结,更谈不好用什么样的历史观去读历史。信息越多,反而越混乱。

知识需要生长在自己的认知体系上,然后反复去践行,反复修正认知。——人至践,则无敌。 

成长到成功之间的鸿沟就是做,持续做对的事情。 

我们总高估1-2年的成就,却低估3年,5年,10年的收获。 

暴躁是因为能力不足,劳苦是因为方法不对。

图片

 扩展  •  历史文章   

• 如何把一个9.5%的策略优化至年化19%?| quantlab6.1代码发布:backtrader择时策略模板

期货海龟策略,年化27.67% | 健康无碍,财富可解千愁

•  AI量化实验室——2024量化投资的星辰大海

▼点击阅读原文,访问“AI量化实验室”策略集合

(http://www.ailabx.com/mall)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI量化投资实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值