年化收益198%,回撤仅12% | lightweight-charts:基于 TradingView 的轻量级金融图表库

原创内容第865篇,专注智能量化投资、个人成长与财富自由。

近期工作计划:

策略管理功能,未运行成功的策略标记为下架,新增官方策略列表。

本地可以读取相应的列表,不过相应的策略,需要权限查看源代码和参数。调用回测引擎回测,并显示在quantstats中。

这是本周的核心工作。非必要指标下架。

是否需要传统技术指标更说,应该使用时间序列函数,用Deap进行排序因子的挖掘。然后使用lightgbm整合多个因子进行排序建模。

图片

基于polars的新因子引擎后的策略效果(http://ailabx.com/mall查看自策略细节)。

图片

图片

代码与策略下载:AI量化实验室——2025量化投资的星辰大海

图片

lightweight-charts-python 是一个基于 TradingView 的轻量级金融图表库 Lightweight Charts 的 Python 封装。它允许开发者通过 Python 快速生成交互式的金融图表(如 K 线图、成交量图等),适用于股票、加密货币、外汇等市场数据的可视化分析。


主要特性

  1. 轻量高效

    • 基于 JavaScript 的 Lightweight Charts,性能优异,渲染速度快。

    • 对大数据量的金融时间序列数据(如 OHLC 数据)处理流畅。

  2. 交互式图表

    • 支持缩放、平移、十字光标(显示坐标点信息)。

    • 图表元素(如指标线、标记点)可动态交互。

  3. 金融专属功能

    • 支持 K 线图(蜡烛图)、面积图、柱状图等。

    • 内置常见技术指标(如 SMA、EMA、布林带等)。

    • 可添加自定义标记(如买卖信号、趋势线)。

  4. 简单易用

    • 通过 Python API 即可生成复杂图表,无需前端开发经验。

    • 支持 Jupyter Notebook 内嵌显示,适合数据分析场景。

  5. 可扩展性

    • 支持多图表联动(例如主图与成交量副图联动)。

    • 可自定义主题颜色、字体、坐标轴格式等。

      应用场景

  • 量化交易:可视化策略回测结果(如买卖信号、持仓点)。

  • 数据分析:在 Jupyter 中快速探索金融数据分布。

  • 研究报告:生成专业的图表嵌入报告或演示文稿。

  • 实时监控:结合 WebSocket 动态更新实时行情(需自行集成数据流)。


注意事项

  1. 数据格式
    输入数据需为 Pandas DataFrame,且包含 time(时间戳)、openhighlowclose 列。时间列建议转换为 Unix 时间戳(秒级或毫秒级)。

  2. 依赖环境

    • 在 Jupyter Notebook 中使用时需启用 Widget 支持。

    • 若需保存为 HTML,需依赖 ipywidgets 和 bokeh 库。

  3. 局限性

    • 与 JavaScript 原版库相比,部分高级功能可能尚未完全实现。

    • 复杂定制(如自定义指标计算)需结合 Python 数据处理。


对比其他库

  • mplfinance:基于 Matplotlib,静态图表,交互性弱。

  • Plotly:交互性强,但配置复杂,体积较大。

  • PyQtGraph:适合实时数据,但默认样式不够金融专业化。

import pandas as pdfrom lightweight_charts import Chart
# 示例数据(需包含 time, open, high, low, close 列)data = pd.read_csv('ohlc_data.csv')
# 创建图表对象chart = Chart()
# 添加 K 线数据chart.set(data)
# 添加移动平均线(SMA)sma = chart.create_line('SMA20', color='blue', width=1)sma.set(pd.Series(data['close'].rolling(20).mean(), name='value'))
# 显示图表(在 Jupyter 中直接展示,或生成 HTML)chart.show(block=True)  # 窗口模式# chart.show()         # Jupyter 模式

吾日三省吾身

写文章,重在思考,阅读,输入,输出过程其实挺愉悦的。

写代码,过程还是比较累的,不过累并快乐着。

因此更需要专注,精力有限,更少更更好,如无必要,勿增实体。

今天和父亲一起散步,路过初中的中学。

感慨,初一入学到现在,已经整整三十年。

往事还历历在目。

往回看,三十年,弹指一挥间。

人生有几个三十年呢,再过三十年,我们已然是老者。

更是物是人非。

回忆总是甜蜜而美好的,即使是一些不那么越快的往事。

因为在回忆里,没有有确定性,一切的过往,都塑造了今天的我们。

其实,我是希望每年都有这么几天,有这样的机会,和父母走走,有散散步,拉拉家常。——希望这样的日子可以持续下去。

我们希望孩子快快长大,希望父母慢点老去。

尽管我们知道,时间就是时间,时间会带来改变,会带走很多。

心理建设也是一个过程,只是希望,这个过程中不要留太多遗憾。

想来,有时候,换个环境,换个心境也挺好了。

就像《拿铁因素》里说的,每天找一段时间,给自己一个激进的休假。

当然,我只是休息一周。

我们热爱工作,认真负责。

但工作并不是生活的全部。

从地点中解放出来,没有空间的限制的状态挺好的。

一台能上网的电脑,基本可以解决多数的问题。

代码和数据下载:AI量化实验室——2025量化投资的星辰大海

AI量化实验室 星球,已经运行三年多,1600+会员。

aitrader代码,因子表达式引擎、遗传算法(Deap)因子挖掘引等,支持vnpy,qlib,backtrader和bt引擎,内置多个年化30%+的策略,每周五迭代一次,代码和数据在星球全部开源。

扩展  •  历史文章   

EarnMore(赚得更多)基于RL的投资组合管理框架:一致的股票表示,可定制股票池管理。(附论文+代码)

年化收益200%+的策略集 | 实时板块资金热力图 「aitrader 5.0系统代码发布」

年化19.66%,回撤12%的稳健策略|manus的启发:基于大模型多智能体的智能投研系统(python代码+数据)

年化30.24%,最大回撤19%,综合动量多因子评分策略再升级(python代码+数据)

年化18%-39.3%的策略集 | backtrader通过xtquant连接qmt实战

stock-pandas,一个易用的talib的替代开源库。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI量化投资实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值