GPU or CPU

使用 GPUs

支持的设备

在一套标准的系统上通常有多个计算设备. TensorFlow 支持 CPU 和 GPU 这两种设备. 我们用指定字符串strings 来标识这些设备. 比如:

  • "/cpu:0": 机器中的 CPU
  • "/gpu:0": 机器中的 GPU, 如果你有一个的话.
  • "/gpu:1": 机器中的第二个 GPU, 以此类推...

如果一个 TensorFlow 的 operation 中兼有 CPU 和 GPU 的实现, 当这个算子被指派设备时, GPU 有优先权. 比如matmul中 CPU和 GPU kernel 函数都存在. 那么在cpu:0gpu:0 中, matmul operation 会被指派给 gpu:0 .

记录设备指派情况

为了获取你的 operations 和 Tensor 被指派到哪个设备上运行, 用 log_device_placement 新建一个session, 并设置为True.

# 新建一个 graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# 新建session with log_device_placement并设置为True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# 运行这个 op.
print sess.run(c)

你应该能看见以下输出:

Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/gpu:0
a: /job:localhost/replica:0/task:0/gpu:0
MatMul: /job:localhost/replica:0/task:0/gpu:0
[[ 22.  28.]
 [ 49.  64.]]

手工指派设备

如果你不想使用系统来为 operation 指派设备, 而是手工指派设备, 你可以用 with tf.device创建一个设备环境, 这个环境下的 operation 都统一运行在环境指定的设备上.

# 新建一个graph.
with tf.device('/cpu:0'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# 新建session with log_device_placement并设置为True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# 运行这个op.
print sess.run(c)

你会发现现在 ab 操作都被指派给了 cpu:0.

Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/cpu:0
a: /job:localhost/replica:0/task:0/cpu:0
MatMul: /job:localhost/replica:0/task:0/gpu:0
[[ 22.  28.]
 [ 49.  64.]]

在多GPU系统里使用单一GPU

如果你的系统里有多个 GPU, 那么 ID 最小的 GPU 会默认使用. 如果你想用别的 GPU, 可以用下面的方法显式的声明你的偏好:

# 新建一个 graph.
with tf.device('/gpu:2'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
  c = tf.matmul(a, b)
# 新建 session with log_device_placement 并设置为 True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# 运行这个 op.
print sess.run(c)

如果你指定的设备不存在, 你会收到 InvalidArgumentError 错误提示:

InvalidArgumentError: Invalid argument: Cannot assign a device to node 'b':
Could not satisfy explicit device specification '/gpu:2'
   [[Node: b = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [3,2]
   values: 1 2 3...>, _device="/gpu:2"]()]]

为了避免出现你指定的设备不存在这种情况, 你可以在创建的 session 里把参数 allow_soft_placement 设置为True, 这样 tensorFlow 会自动选择一个存在并且支持的设备来运行 operation.

# 新建一个 graph.
with tf.device('/gpu:2'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
  c = tf.matmul(a, b)
# 新建 session with log_device_placement 并设置为 True.
sess = tf.Session(config=tf.ConfigProto(
      allow_soft_placement=True, log_device_placement=True))
# 运行这个 op.
print sess.run(c)

使用多个 GPU

如果你想让 TensorFlow 在多个 GPU 上运行, 你可以建立 multi-tower 结构, 在这个结构里每个 tower 分别被指配给不同的 GPU 运行. 比如:

# 新建一个 graph.
c = []
for d in ['/gpu:2', '/gpu:3']:
  with tf.device(d):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])
    c.append(tf.matmul(a, b))
with tf.device('/cpu:0'):
  sum = tf.add_n(c)
# 新建session with log_device_placement并设置为True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# 运行这个op.
print sess.run(sum)

你会看到如下输出:

Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: Tesla K20m, pci bus
id: 0000:02:00.0
/job:localhost/replica:0/task:0/gpu:1 -> device: 1, name: Tesla K20m, pci bus
id: 0000:03:00.0
/job:localhost/replica:0/task:0/gpu:2 -> device: 2, name: Tesla K20m, pci bus
id: 0000:83:00.0
/job:localhost/replica:0/task:0/gpu:3 -> device: 3, name: Tesla K20m, pci bus
id: 0000:84:00.0
Const_3: /job:localhost/replica:0/task:0/gpu:3
Const_2: /job:localhost/replica:0/task:0/gpu:3
MatMul_1: /job:localhost/replica:0/task:0/gpu:3
Const_1: /job:localhost/replica:0/task:0/gpu:2
Const: /job:localhost/replica:0/task:0/gpu:2
MatMul: /job:localhost/replica:0/task:0/gpu:2
AddN: /job:localhost/replica:0/task:0/cpu:0
[[  44.   56.]
 [  98.  128.]]

cifar10 tutorial 这个例子很好的演示了怎样用GPU集群训练.

==============programe with GPU==================

下面是带GPU的Minist程序代码:

# encoding=utf8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf

flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', '/tmp/data/', 'Directory for storing data')
global mnist
mnist = input_data.read_data_sets('/home/yuan/testMinist', one_hot=True)
# mnist = input_data.read_data_sets('/home/yuan/Xia', one_hot=True)
#远程下载MNIST数据,建议先下载好并保存在MNIST_data目录下
def DownloadData():
    global mnist
    #mnist = input_data.read_data_sets('/home/yuan/testMinist', one_hot=True)  #编码格式:one-hot
    #print(mnist.train.images.shape, mnist.train.labels.shape)
    #print(mnist.test.images.shape, mnist.test.labels.shape)
    #print(mnist.validation.images.shape, mnist.validation.labels.shape)

def weight_variable(shape):  
    initial = tf.truncated_normal(shape, stddev=0.1)  
    return tf.Variable(initial)  
def bias_variable(shape):  
    initial = tf.constant(0.1, shape=shape)  
    return tf.Variable(initial)
def conv2d(x, W):  
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):  
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

def Train():
    with tf.device('/cpu:0'):
        x = tf.placeholder("float", shape=[None, 784])            #构建占位符,代表输入的图像,None表示样本的数量可以是任意的
        W = tf.Variable(tf.zeros([784,10]))                    #构建一个变量,代表训练目标weights,初始化为0
        b = tf.Variable(tf.zeros([10]))
        y_ = tf.placeholder("float", shape=[None, 10])
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
        #sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True))
        #sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
        #sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options))
        sess = tf.InteractiveSession(config=config)
        #sess = tf.Session(config=config)
    with tf.device('/gpu:0'):
    #with tf.device('/cpu:0'):
       #sess = tf.InteractiveSession()

        #Step 1
        #定义算法公式Softmax Regression
        # = tf.placeholder("float", shape=[None, 784])            #构建占位符,代表输入的图像,None表示样本的数量可以是任意的
        # = tf.Variable(tf.zeros([784,10]))                    #构建一个变量,代表训练目标weights,初始化为0
       #b = tf.Variable(tf.zeros([10]))                        #构建一个变量,代表训练目标biases,初始化为0
        #y = tf.nn.softmax(tf.matmul(x, W) + b)                 #构建了一个softmax的模型:y = softmax(Wx + b),y指样本标签的预测值
        W_conv1 = weight_variable([5, 5, 1, 32])  
        b_conv1 = bias_variable([32])  
          
        x_image = tf.reshape(x, [-1, 28, 28, 1])  
          
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  
        h_pool1 = max_pool_2x2(h_conv1)  
          
        W_conv2 = weight_variable([5, 5, 32, 64])  
        b_conv2 = bias_variable([64])  
          
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)  
        h_pool2 = max_pool_2x2(h_conv2)  
          
        # Now image size is reduced to 7*7  
        W_fc1 = weight_variable([7 * 7 * 64, 1024])  
        b_fc1 = bias_variable([1024])  
          
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])  
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  
          
        keep_prob = tf.placeholder("float")  
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)  
          
        W_fc2 = weight_variable([1024, 10])  
        b_fc2 = bias_variable([10])  
        y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

        #Step 2
        #定义损失函数,选定优化器,并指定优化器优化损失函数
        #y_ = tf.placeholder(tf.float32, [None, 10])             # 构建占位符,代表样本标签的真实值
       #y_ = tf.placeholder("float", shape=[None, 10])
        # 交叉熵损失函数
    with tf.device('/cpu:0'):
        cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
        #y = tf.matmul(x, W) + b
        #cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))

        # 使用梯度下降法(0.01的学习率)来最小化这个交叉熵损失函数
        #train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)


        #Step 3
        #使用随机梯度下降训练数据
        #tf.global_variables_initializer().run() #when the comple enviroment is python3, changing global_variables_initializer
        #tf.initialize_all_variables().run()  #when the comple enviroment is python2, changing initialize_all_variables()
        #for i in range(10000):                                                  #迭代次数为1000
        #    batch_xs, batch_ys = mnist.train.next_batch(100)                   #使用minibatch的训练数据,一个batch的大小为100
        #   sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})        #用训练数据替代占位符来执行训练

        #Step 4
        #在测试集上对准确率进行评测
        correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))          #tf.argmax()返回的是某一维度上其数据最大所在的索引值,在这里即代表预测值和真值
        #accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))      #用平均值来统计测试准确率
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))      #用平均值来统计测试准确率
        #sess.run(tf.initialize_all_variables()) # when compile in python2,changing this.
        sess.run(tf.global_variables_initializer()) # when compile in python3,changing this.
        
        
        #print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))  #打印测试信息

        
        for i in range(2000):                                                  #迭代次数为1000
            #batch_xs, batch_ys = mnist.train.next_batch(50)                   #使用minibatch的训练数据,一个batch的大小为100
          batch = mnist.train.next_batch(50)
            #sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})        #用训练数据替代占位符来执行训练
          if i%100 == 0:  # this step is conducted when the condition needs
            train_accuracy = accuracy.eval(feed_dict={  
               x:batch[0], y_: batch[1], keep_prob: 1.0})  
            print ("step %d, training accuracy %.3f" %(i, train_accuracy))  # the output the training accuracy when the condition needs
          train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})  # this step is used to get an trained model  

        
        #sess.close()
        print ("Training finished")
        print ("test accuracy %.3f" % accuracy.eval(feed_dict={  
            x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

if __name__ == '__main__':
    DownloadData();
    Train();
   

==============programe without GPU, only using CPU==================

下面是带CPU的Minist程序代码:

#!/usr/bin/python  
# -*- coding: utf-8 -*-
import input_data
mnist = input_data.read_data_sets('/home/yuan/testMinist', one_hot=True)
import tensorflow as tf  
import sys  
#from tensorflow.examples.tutorials.mnist import input_data  
from tensorflow.examples.tutorials.mnist import input_data
#print("step",mnist)
#print("step",mnist.train)
#print("step",mnist)
 
def weight_variable(shape):  
  initial = tf.truncated_normal(shape, stddev=0.1)  
  return tf.Variable(initial)  
 
def bias_variable(shape):  
  initial = tf.constant(0.1, shape=shape)  
  return tf.Variable(initial)  
 
def conv2d(x, W):  
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')  
 
def max_pool_2x2(x):  
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  

 
#mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)  
 
sess = tf.InteractiveSession()  
 
x = tf.placeholder("float", shape=[None, 784])  
y_ = tf.placeholder("float", shape=[None, 10])  
 
W = tf.Variable(tf.zeros([784,10]))  
b = tf.Variable(tf.zeros([10]))  
 
W_conv1 = weight_variable([5, 5, 1, 32])  
b_conv1 = bias_variable([32])  
 
x_image = tf.reshape(x, [-1, 28, 28, 1])  
 
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  
h_pool1 = max_pool_2x2(h_conv1)  
 
W_conv2 = weight_variable([5, 5, 32, 64])  
b_conv2 = bias_variable([64])  
 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)  
h_pool2 = max_pool_2x2(h_conv2)  
 
# Now image size is reduced to 7*7  
W_fc1 = weight_variable([7 * 7 * 64, 1024])  
b_fc1 = bias_variable([1024])  
 
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])  
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  
 
keep_prob = tf.placeholder("float")  
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)  
 
W_fc2 = weight_variable([1024, 10])  
b_fc2 = bias_variable([10])  
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  
 
 
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))  
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)  
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))  
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))  
sess.run(tf.initialize_all_variables())  
 
for i in range(2000):  # the iterate steps for array
  batch = mnist.train.next_batch(50)  
  #print("the format shape is:",batch[0].shape)
  #print("the format size is:",batch[0].size)
  #print("the format 2 is:",batch[0])
  #print("the format 2 is:",batch[0].length)
  #print("the format 2 is:",batch.size)
  if i%100 == 0:  # this step is conducted when the condition needs
    train_accuracy = accuracy.eval(feed_dict={  
        x:batch[0], y_: batch[1], keep_prob: 1.0})  
    print "step %d, training accuracy %.3f"%(i, train_accuracy)  # the output the training accuracy when the condition needs
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})  # this step is used to get an trained model  
 
print "Training finished"  
 
print "test accuracy %.3f" % accuracy.eval(feed_dict={  
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}) 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值