运用深度学习来理解自然语言

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_38208741/article/details/80474434

深度学习是机器学习技术的一个名字,其使用多层人工神经网络。

机器学习和人工智能的一部分作用是如何使用文本和现有的知识来让计算机变得更智能。在深度学习出现之前,文本图像所包含的意思是通过人为设计的符号和结构传达给计算机。深度学习则是用向量来表示语义,如何灵活的表示向量、如何用向量编码的语义去完成分类、识别等工作。深度学习使用向量来表示语义,因此概念不再是由一个庞大的符号来表示,而是由特征值表示的一个向量来表示。向量的每次索引代表神经网络训练得到的一个特征,向量的长度一般在300左右,他是一种更为高效的概念表示方法,因为这里的概念是由特征组成的。两个符号只有相同或者不同的两种情况,而两个向量可以用相似性来衡量。‘庆丰包子’对应的向量与‘狗不理包子’对应的向量很接近,但是他们和‘坦克’对应的向量差别较大。

文本自然语言处理中,已知原来表示单个词语的向量,如何使用这些词表示语义,形成完成的句子,是通过使用递归神经网络(RNN)的技术。

没有更多推荐了,返回首页