顺序表插入、删除平均移动次数

本文详细探讨了顺序表中的插入和删除操作,包括不同情况下这些操作的时间复杂度。通过具体例子展示了在表头、表尾及平均情况下的操作过程与时间消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更新时间:2021年8月26日

写在前边的话:你的支持是我写作的动力,有帮助到你的话麻烦点赞收藏呦。感激不尽!如有错误也请留言指正。

考研数据结构练习,欢迎订阅我的专辑《考研数据结构题型分类讲解练习》


目录

一、插入操作

二、删除操作

三、总结


一、插入操作

  • 最好情况:在表尾插入(即i=n+1),元素后移语句将不执行,时间复杂度为0(1)。
  • 最坏情况:在表头插入(即i=1),元素后移语句将执行n次,时间复杂度为0(n)。
  • 平均情况:{\color{Red} \frac{n}{2}}。解释如下:

  • \sum_{i=0}^{n+1} \frac{1}{n+1}(n-i)=\frac{1}{n+1} \sum_{i=0}^{n+1}(n-i)=\frac{1}{n+1} \frac{n(n+1)}{2}=\frac{n}{2}

举个例子

有一个长度为8的顺序表

如果插入8号位,一个元素都不需要移动。

如果插入7号位,需要移动一个元素。

同理可得出插入其他位所需要移动的次数。

平均移动次数就是:(8+7+6+5+4+3+2+1+0)/9=\frac{1}{9}*\frac{(8+0)*9}{2} =4


二、删除操作

  • 最好情况:删除表尾元素(即i=n),无须移动元素,时间复杂度为0(1)。
  • 最坏情况:删除表头元素(即i-1),需移动除第一个元素外的所有元素,时间复杂度为0(n)。
  • 平均情况:{\color{Red} \frac{n-1}{2}}。解释如下:
    \sum_{i=0}^{n} p_{0}(n-i)=\sum_{i=0}^{n} \frac{1}{n}(n-i)=\frac{1}{n} \sum_{i=0}^{n}(n-i)=\frac{1}{n} \frac{n(n-1)}{2}=\frac{n-1}{2}

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eva_5433

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值