3. AI 理解偏差方差之间的平衡

偏差度量了学习算法的期望预测与真实结果的偏离程度,刻画描述了算法本身对数据的拟合能力,也就是训练数据的样本与训练出来的模型的匹配程度;方差度量了训练集的变化导致学习性能的变化,描述了数据扰动造成的影响;噪声则表示任何学习算法在泛化能力的下界,描述了学习问题本身的难度。偏差方差分解表示了泛化性能有三者决定。
  一般来说偏差和方差有冲突称之为偏差-方差窘境。在给定学习任务下,在训练不足时,学习器的拟合能力较弱,训练数据的扰动不足以使学习器产生明显变化,此时偏差起到最要的作用,随着学习器拟合能力的加强,偏差越来越小,但是任何一点数据抖动都可以被学习,方差逐渐占据主导,若训练数据自身的非全局的特性被学习到了,那么久发生了过拟合。

E ( f ; D ) = v a r ( x ) + b i a s 2 ( x ) + ϵ 2 E(f;D) = var(x) + bias^2(x) + \epsilon^2 E(f;D)=var(x)+bias2(x)+ϵ2

学习算法的期望预测为:
y ^ ( x ) = E ( f ( x ; D ) ) \hat y(x) = E(f(x;D)) y^(x)=E(f(x;D))

就是所有预测值的平均值;

产生的方差的计算为:

v a r ( x ) = E [ ( f ( x ; D ) − y ^ ( x ) ) 2 ] var(x) = E[(f(x;D)-\hat y(x))^2] var(x)=E[(f(x;D)y^(x))2]

方差就是表示在某测试数据集上的方差,都是测试数据集上的预测值之间的关系,与真实的值并没有关系

对于噪声定义为:

ϵ 2 = E [ ( y d − y ) 2 ) \epsilon ^ 2 = E[(y_d - y)^2) ϵ2=E[(ydy)2)

标记值与真实值差平方的期望。

偏差则定义成期望输出与真实标记的差别:

b i a s 2 ( x ) = ( y ^ ( x ) − y ) 2 bias^2(x) = (\hat y(x) -y)^2 bias2(x)=(y^(x)y)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值