交叉熵的理解

相对熵(KL散度):用于描述两个独立分布之间的差异。

对下式变形可以得到:

DKL(P || q)的==ΣI= 1NP(XI)的日志(P(XI)) - ΣI= 1NP(XI)的日志(Q(XI)) - H(P(X))+ [ - Σ I = 1NP(XI)的日志(q(XI))] DKL(p || q)=ΣI= 1NP(XI)的日志(p(XI)) - ΣI= 1NP(XI)的日志(q(XI) )= - H(p(X))+ [ - ΣI= 1NP(XI)的日志(q(XI))]DKL(p || q)= \ sum _ {i = 1} ^ {n} p(x_ {i})log(p(x_ {i})) -  \ sum _ {i = 1} ^ {n} p(X_ {I})logq(X_ {I})) -  H(p(X))+ [ -  \ sum_ {I = 1} ^ {N} p(X_ {I}数(q(X_ {I })))] DKL(p || q)= \ sum _ {i = 1} ^ {n} p(x_ {i} log(p(x_ {i}))) -  \ sum _ {i = 1 } ^ {n} p(x_ {i})log(q(x_ {i})))=  -  H(p(x))+ [ -  \ sum _ {i = 1} ^ {n} p(x_ {I})日志(q(X_ {I}))]

 

等式的前一部分恰巧就是p的熵,等式的后一部分,就是交叉熵:

H(P,Q)= - ΣI= 1NP(XI)的日志(Q(XI))H(P,Q)= - ΣI= 1NP(XI)的日志(Q(XI))

 

在机器学习中,我们需要评估标签和预测之间的差距,使用KL散度刚刚好,即DKL(Y || Y 1)DKL(Y || Y 1),由于KL散度中的前一部分 - H(y)的-H(y)的不变,故在优化过程中,只需要关注交叉熵就可以了。所以一般在机器学习中直接用交叉熵做损耗,评估模型。

交叉熵用于衡量在给定真实发布下,使用非真实分布所指定的策略消除系统的不确定性所需要付出的努力的大小。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值