ML2: Sklearn.preprocessiong LabelEncoder()

from __future__ import unicode_literals
import numpy as np
import sklearn.preprocessing as sp
raw_samples = np.array([
    'audi', 'ford', 'audi', 'toyota', 'ford',
    'bmw', 'toyota', 'ford', 'audi'])
print(raw_samples)
lbe = sp.LabelEncoder()
lbe_samples = lbe.fit_transform(raw_samples)
print(lbe_samples)
raw_samples = lbe.inverse_transform(lbe_samples)
print(raw_samples)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值