应用于线性回归的的梯度下降算法

将梯度下降算法和代价函数结合,将其应用于具体的拟合直线的线性回归算法里。

梯度下降算法(Gradient descent algorithm)线性回归模型(Linear Regression Model)
repeat until convergence{
                   θ j : = θ j − α ∂ ∂ θ j J ( θ ) {\theta_{j}}:={\theta_{j}}-\alpha \frac{\partial }{\partial {\theta_{j}}}J\left(\theta \right) θj:=θjαθjJ(θ)
      (for j=1 and j=0)
}                                      
h θ ( x ) = θ 0 + θ 1 x h_\theta \left( x \right)=\theta_{0}+\theta_{1}x hθ(x)=θ0+θ1x
J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J \left( \theta_0, \theta_1 \right) = \frac{1}{2m}\sum\limits_{i=1}^m \left( h_{\theta}(x^{(i)})-y^{(i)} \right)^{2} J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2

对我们之前的线性回归问题运用梯度下降算法,关键在于求出代价函数的导数:

        ∂ ∂ θ j J ( θ 0 , θ 1 ) = ∂ ∂ θ j 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 \frac{\partial }{\partial {{\theta }{j}}}J({{\theta_0}},{{\theta_1}})=\frac{\partial }{\partial {{\theta }{j}}}\frac{1}{2m}{{\sum\limits_{i=1}^{m}{\left( {{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}} \right)}}^{2}} θjJ(θ0,θ1)=θj2m1i=1m(hθ(x(i))y(i))2

        j = 0 j=0 j=0 时: ∂ ∂ θ 0 J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) \frac{\partial }{\partial {{\theta_0}}}J({{\theta_0}},{{\theta_1}})=\frac{1}{m}{{\sum\limits_{i=1}^{m}{\left( {{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}} \right)}}} θ0J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))

        j = 1 j=1 j=1 时: ∂ ∂ θ 1 J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x ( i ) ) \frac{\partial }{\partial {{\theta_1}}}J({{\theta_0}},{{\theta_1}})=\frac{1}{m}\sum\limits_{i=1}^{m}{\left( \left( {{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}} \right)\cdot {{x}^{(i)}} \right)} θ1J(θ0,θ1)=m1i=1m((hθ(x(i))y(i))x(i))

则应用于线性回归的的梯度下降算法改写成:
repeat until convergence{
        θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) {\theta_{0}}:={\theta_{0}}-\alpha \frac{1}{m}{{\sum\limits_{i=1}^{m}{\left( {{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}} \right)}}} θ0:=θ0αm1i=1m(hθ(x(i))y(i))

        θ 1 : = θ 1 − α 1 m ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) ⋅ x ( i ) ) {\theta_{1}}:={\theta_{1}}-\alpha \frac{1}{m}\sum\limits_{i=1}^{m}{\left( \left( {{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}} \right)\cdot {{x}^{(i)}} \right)} θ1:=θ1αm1i=1m((hθ(x(i))y(i))x(i))
}

通俗地讲,对于线性回归模型,有一个线性函数,并且有一个代价函数,这个代价函数用来判断这个线性函数的预测值与实际值之间的误差,误差越小,则这个线性函数就越好。那么怎么使这个代价函数最小呢?即选取怎样的参数令这个代价函数最小。这时候就通过梯度下降算法来找出这个参数!梯度下降算法就是用来求解出使得代价函数取得最小值的参数值的。



批量梯度下降算法(Batch梯度下降法)

我们刚刚使用的算法,有时也称为批量梯度下降。
”批量梯度下降”,指的是在梯度下降的每一步中,我们都用到了所有的训练样本,在梯度下降中,在计算微分求导项时,我们需要进行求和运算,所以,在每一个单独的梯度下降中,我们最终都要计算这样一个东西,这个项需要对所有 m m m个训练样本求和。因此,批量梯度下降法这个名字说明了我们需要考虑所有这一"批"训练样本,而事实上,有时也有其他类型的梯度下降法,不是这种"批量"型的,不考虑整个的训练集,而是每次只关注训练集中的一些小的子集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值