用PYTHON优化投资组合的配置
简介
本文运用马科维茨的CAPM理论对已有的ETF进行配置优化。详细的分析每一个 ETF的收益指标,综合考虑最近两年的收益率和波动率,通过计算这些参数,最终达到,一个优秀的配置比例使得波动小而收益高。
1.引入库和数据
首先导入用到的库。
然后导入ETF每天收盘价的数据。
各个ETF 的代号及名称:
SPY----标普500指数
PBW----清洁能源上市公司加强指数
AAPL----苹果公司股票
INDA----印度孟买交易所大中型股票指数
EQR----美国住宅租赁管理公司
GOVT----美国长期国债
GLD---- 黄金现货ETF
2.初步观察
模拟自2020年1月1日开始投资到现在的收益变动情况:就是假设那个在起点时间在每个ETF投入一块钱,到现在的市场价格。
PS:成长股(PBW)的波动太大了