用PYTHON优化投资组合的配置

本文运用马科维茨的CAPM理论,结合Python分析多个ETF的收益指标,如收益率、波动率等,构建有效前沿和资本市场线,最终确定最优资产比例:48.8%苹果公司股票,52.2%黄金ETF,实现高收益低风险的投资组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用PYTHON优化投资组合的配置


简介

本文运用马科维茨的CAPM理论对已有的ETF进行配置优化。详细的分析每一个 ETF的收益指标,综合考虑最近两年的收益率和波动率,通过计算这些参数,最终达到,一个优秀的配置比例使得波动小而收益高。

1.引入库和数据

首先导入用到的库。
在这里插入图片描述
然后导入ETF每天收盘价的数据。
各个ETF 的代号及名称:
SPY----标普500指数
PBW----清洁能源上市公司加强指数
AAPL----苹果公司股票
INDA----印度孟买交易所大中型股票指数
EQR----美国住宅租赁管理公司
GOVT----美国长期国债
GLD---- 黄金现货ETF
在这里插入图片描述

2.初步观察

模拟自2020年1月1日开始投资到现在的收益变动情况:就是假设那个在起点时间在每个ETF投入一块钱,到现在的市场价格。
在这里插入图片描述服务器
PS:成长股(PBW)的波动太大了

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值