人工智能、机器学习、深度学习

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_38324954/article/details/96275233

1.人工智能、机器学习、深度学习的关系
人工智能就是用机器模拟人的意思和思维。
机器学习是人工智能的一种实现方法,是人工智能的子集。
深度学习就是深层次的神经网络,是机器学习的一种实现方法,是机器学习的一个子集。
在这里插入图片描述
2.机器学习简介
机器学习是人工智能的一个分支,它是实现人工智能的一个核心技术,即以机器学习为手段解决人工智能中的问题
机器学习的特点:机器学习是通过一些让计算机可以自动“学习”的算法并从数据中分析获得规律,然后利用规律对新样本进行预测。
机器学习的形式化的描述
对于某类任务T和性能P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就成这个计算机程序在从经验E学习
在这里插入图片描述
3.机器学习的学习形式分类
在这里插入图片描述
(1)有监督学习(supervised learning)
有监督学习指的是实现需要准备好输入与正确输出(区分方法)相配套的训练数据,让计算机进行学习,一遍当它被输入某个数据时能够得到正确的输出(区分方法)
有监督机器学习的典型应用模式:

  • 预测(针对连续数据)
    常见算法:线性回归、Gradient Boostin、AdaBoost、神经网络
  • 分类(针对离散的数据)
    常见算法:逻辑回归、决策树、KNN、随机森林、支持向量机、朴素贝叶斯、神经网络
    (2)无监督学习(unsupervised learning)
    无监督学习的目的是让计算机自己去学习怎样做一些事情,所有数据只有特征而没有标记。
    无监督学习被运用于仅提供输入用数据、需要计算机自己找出数据内在结构的场合。其目的是让计算机从数据中抽取其中所包含的模式及规则。
    **无监督机器学习的典型应用模式:**聚类
    常见算法:K-means、关联规则抽取
    (3)半监督学习
    半监督学习处于监督学习和无监督学习的中间地带。对于半监督学习,其训练数据一部分有标记,另一部分没有标记,而没有标记数据的数量常常极大于有标记数据的数量。
    它的基本规律是:数据的分布必然不是完全随机的,通过结合有标记数据的局部特征,以及大量没标记数据的整体分布,可以得到比较好的分类结果。
    (4)强化学习(reinforcement learning,RL)
    强化学习是解决计算机从感知到决策控制的问题,从而实现通用人工智能。
    强化学习是目标导向的,从一张白纸的状态开始,经由许多个步骤来实现某一维度上的目标最大化。最简单的理解是在训练过程中,不断去尝试,错误就乘法,正确就奖励,由此训练得到的模型在各个状态环境中都最好。
    对强化学习来说,它虽然没有标记,但有一个延迟奖励与训练相关,通过学习过程中的激励函数获得某种从状态到行动的映射。强化学习强调如何基于环境而行动,以取得最大化的预期利益
展开阅读全文

没有更多推荐了,返回首页