RnnNoise降噪源码解析-训练数据准备和模型转换

1.源码

Github:https://github.com/xiph/rnnoise

2.编译特征提取工具

cd rnnoise-master/src
./compile.sh

执行后会生成文件denoise_training,它有三个参数 ,使用方式如下:

./denoise_training clean_speech.pcm noise_background.pcm 5000000 > output.f32

每个音频数据导出87维特征,只要音频足够长,可以count参数设置大一点。最终导出的数据则为(n,87)。

3.准备数据

论文数据集可以到作者博客主页下载:
作者主页:https://jmvalin.ca/demo/rnnoise/
噪声数据集下载链接:https://media.xiph.org/rnnoise/rnnoise_contributions.tar.gz
将数据集拼接成一条语音:

import glob
import os
import numpy as np
import scipy.io.wavfile as wave

def merge_files(path_read_folder, path_write_wav_file, wav=None):
    #
    files = os.listdir(path_read_folder)
    merged_signal = []
    count = 0
    for filename in glob.glob(os.path.join(path_read_folder, '*.wav')):

        if count > len(files) // 2:
            sr, signal = wave.read(filename)
            merged_signal.append(signal)
        else:
            count = count + 1
    merged_signal = np.hstack(merged_signal)
    merged_signal = np.asarray(merged_signal, dtype=np.int16)
    wave.write(path_write_wav_file, sr, merged_signal)

# noisy train total
path_read_folder = "/CleanData"
path_write_wav_file = "output.wav"
merge_files(path_read_folder, path_write_wav_file)

将准备好的数据按2中的方式提取特征即可。

4.生成动态连接库(调用)

上面的部分是生成训练用的特征数据,如果你需要一个类似sdk的库文件,那么在源码根目录中执行,就可以生成librnnoise.so了。

./autogen.sh
 ./configure --prefix=/usr
 make
 make install -j 

5.获取.h5文件

python ./training/bin2hdf5.py output.f32 5000000 87 training.h5

bin2hdf5.py有4个参数,第一个为c输出的特征值文件,第二个/第三个为矩阵shape,第四个参数为输出文件。

如果output.f32中的数据为(n,87),则请把第二个参数替换为n.

6.开始训练

python ./training/rnn_train.py

7.获取权重参数

./training/dump_rnn.py weights.hdf5 rnn_data.c rnn_data.h name

注意:源码提供的dump_rnn.py不可用,需修改至如下形式:

#!/usr/bin/python

from __future__ import print_function

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import GRU
from keras.models import load_model
from keras import backend as K
import sys
import re
import numpy as np

def printVector(f, vector, name):
    v = np.reshape(vector, (-1));
    #print('static const float ', name, '[', len(v), '] = \n', file=f)
    f.write('static const rnn_weight {}[{}] = {{\n   '.format(name, len(v)))
    for i in range(0, len(v)):
        f.write('{}'.format(min(127, int(round(256*v[i])))))
        if (i!=len(v)-1):
            f.write(',')
        else:
            break;
        if (i%8==7):
            f.write("\n   ")
        else:
            f.write(" ")
    #print(v, file=f)
    f.write('\n};\n\n')
    return;

def printLayer(f, hf, layer):
    weights = layer.get_weights()
    printVector(f, weights[0], layer.name + '_weights')
    if len(weights) > 2:
        printVector(f, weights[1], layer.name + '_recurrent_weights')
    printVector(f, weights[-1], layer.name + '_bias')
    name = layer.name
    activation = re.search('function (.*) at', str(layer.activation)).group(1).upper()
    if len(weights) > 2:
        f.write('const GRULayer {} = {{\n   {}_bias,\n   {}_weights,\n   {}_recurrent_weights,\n   {}, {}, ACTIVATION_{}\n}};\n\n'
                .format(name, name, name, name, weights[0].shape[0], weights[0].shape[1]/3, activation))
        hf.write('#define {}_SIZE {}\n'.format(name.upper(), weights[0].shape[1]/3))
        hf.write('extern const GRULayer {};\n\n'.format(name));
    else:
        f.write('const DenseLayer {} = {{\n   {}_bias,\n   {}_weights,\n   {}, {}, ACTIVATION_{}\n}};\n\n'
                .format(name, name, name, weights[0].shape[0], weights[0].shape[1], activation))
        hf.write('#define {}_SIZE {}\n'.format(name.upper(), weights[0].shape[1]))
        hf.write('extern const DenseLayer {};\n\n'.format(name));


#def foo(c, name):
#    return 1

#def mean_squared_sqrt_error(y_true, y_pred):
#    return K.mean(K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1)

def mean_squared_sqrt_error(y_true, y_pred):
    return K.mean(K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1)

def my_crossentropy(y_true, y_pred):
    return K.mean(2*K.abs(y_true-0.5)*K.binary_crossentropy(y_pred, y_true), axis=-1)

def mymask(y_true):
    return K.minimum(y_true+1., 1.)

def msse(y_true, y_pred):
    return K.mean(mymask(y_true)*K.square(K.sqrt(y_pred)-K.sqrt(y_true)),axis=-1)

def mycost(y_true, y_pred):
    return K.mean(mymask(y_true) * (10*K.square(K.square(K.sqrt(y_pred) - K.sqrt(y_true))) + K.square(K.sqrt(y_pred) - K.sqrt(y_true)) + 0.01*K.binary_crossentropy(y_pred, y_true)), axis=-1)

def my_accuracy(y_true, y_pred):
    return K.mean(2*K.abs(y_true-0.5) * K.equal(y_true, K.round(y_pred)), axis=-1)

class WeightClip:
    def __init__(self, c=2,name='WeightClip'):
        self.c = c

    def __call__(self, p):
            #return {'name': self.__class__.__name__, 'c': self.c}
        return K.clip(p, -self.c, self.c)

    def get_config(self):
        return {'name': self.__class__.__name__, 'c': self.c}




if __name__ == '__main__':
   # model = load_model(sys.argv[1], {'msse': mean_squared_sqrt_error,
   #                                  'mean_squared_sqrt_error': mean_squared_sqrt_error,
   #                                  'my_crossentropy': mean_squared_sqrt_error,
   #                                  'mycost': mean_squared_sqrt_error,
   #                                  'WeightClip': foo})

    model = load_model(
            sys.argv[1], 
            custom_objects={
                'msse':msse, 
                'mean_squared_sqrt_error': mean_squared_sqrt_error, 
                'my_crossentropy':my_crossentropy, 
                'mycost':mycost, 
                'WeightClip':WeightClip}
            )
    weights = model.get_weights()

    f = open(sys.argv[2], 'w')
    hf = open(sys.argv[3], 'w')

    f.write('/*This file is automatically generated from a Keras model*/\n\n')
    f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "rnn.h"\n\n')

    hf.write('/*This file is automatically generated from a Keras model*/\n\n')
    hf.write('#ifndef RNN_DATA_H\n#define RNN_DATA_H\n\n#include "rnn.h"\n\n')

    layer_list = []
    for i, layer in enumerate(model.layers):
        if len(layer.get_weights()) > 0:
            printLayer(f, hf, layer)
        if len(layer.get_weights()) > 2:
            layer_list.append(layer.name)

    hf.write('struct RNNState {\n')
    for i, name in enumerate(layer_list):
        hf.write('  float {}_state[{}_SIZE];\n'.format(name, name.upper()))
    hf.write('};\n')

    hf.write('\n\n#endif\n')

    f.close()
    hf.close()

将生成的rnn_data.c和rnn_data.h替换src中的代码即可。

将C代码中的相应文件替换即可。
环境配置请参考:https://blog.csdn.net/danteLiujie/article/details/102769905?spm=1001.2014.3001.5501
特征提取流程请参考:
1.https://blog.csdn.net/danteLiujie/article/details/102799038?spm=1001.2014.3001.5501
2.https://www.programmersought.com/article/16676035121/
16k采样率模型训练参考:
1.https://github.com/YongyuG/rnnoise_16k
Windows代码参考:
1.https://github.com/danteliujie/rnnoise
改进版本:
https://github.com/GregorR/rnnoise-nu/tree/master/training

  • 2
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
人工智能课程设计-基于CNN-LSTM的轴承故障诊断Python源码是一种基于深度学习算法的程序,旨在通过分析轴承的声音和振动信号来识别轴承的故障情况。该源码包括了详细的数据采集、预处理、模型构建、训练和测试的步骤。 首先,在数据采集方面,我们使用了传感器采集了大量轴承的声音和振动信号,并将这些原始数据进行了预处理,包括信号滤波、降噪和特征提取等步骤。接着,我们以Python语言编写了源码,使用了TensorFlow或PyTorch等深度学习框架,构建了基于CNN-LSTM的模型。 在训练方面,我们使用了提前准备好的训练数据集,对模型进行了训练,并进行了参数调优和模型性能评估。同时,我们也提供了训练好的模型文件,以便学生可以直接使用。 最后,在测试方面,我们提供了轴承故障诊断的测试数据集,并编写了测试代码,让学生可以通过输入测试数据,使用训练好的模型进行轴承故障诊断,并输出诊断结果。此外,我们还提供了可视化的结果展示部分,让学生可以直观地了解诊断效果。 整个源码设计旨在帮助学生深入理解深度学习在故障诊断领域的应用,同时也提供了丰富的数据和完整的训练流程,让学生可以通过实际操作来加深对人工智能技术的理解和应用。希望通过这样的课程设计,能够激发学生对人工智能技术的兴趣,培养其实际动手能力和创新能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cynthia.Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值