BFS和DFS优先搜索算法

1. BFS与DFS

1.1 BFS

DFS即Depth First Search,深度优先搜索。它是一种图遍历算法,它从一个起始点开始,逐层扩展搜索范围,直到找到目标节点为止。

这种算法通常用于解决“最短路径”问题,比如在迷宫中找到从起点到终点的最短路径

  • 首先,从起点开始,检查所有与它相邻的位置,也就是距离起点为1的位置
  • 然后,继续向外扩展,检查所有距离起点为2的位置,以此类推,直到找到出口
    在这里插入图片描述

我们发现每次搜索的位置都是距离当前节点最近的点。因此,BFS是具有最短路的性质的。在BFS中,可以使用队列来存储待搜索的节点。起始点首先加入队列中,然后不断从队列中取出节点,检查它是否是目标节点。如果不是,就将它的所有未被访问过的邻居加入队列中。这样,队列中的节点总是按照它们距离起点的距离排序,先加入队列的节点总是先被取出来搜索

通过这种方式,BFS可以找到起点到目标节点的最短路径。在实际应用中,BFS还可以用于拓扑排序、连通性检测等问题的解决。

1.2 DFS

DFSDepth First Search,深度优先搜索。它从一个起始点开始,一直往下走直到不能再走为止(简单理解:一条路走到黑),然后返回到前一个节点继续探索它的其他分支,直到找到目标节点为止。这种算法通常用于解决“遍历”问题,比如在树中查找所有的叶子节点

要理解DFS,也还可以想象自己在迷宫中寻找所有可行的路径

  • 首先,你会从起点开始,顺着一条路一直走,直到你走到一个死胡同
  • 再返回到前一个节点,继续探索其他分支

在DFS中,你可以使用递归或栈来实现深度优先搜索。通过这种方式,DFS可以找到所有可行的路径,或者在树中查找所有的叶子节点。

在实际应用中,DFS还可以用于拓扑排序、连通性检测等问题的解决。与BFS相比,DFS通常更适合处理深度优先的问题,而BFS更适合处理广度优先的问题

1.3 BFS与DFS的比较

如果分别用DFS 与 BFS 将二叉树的所有结点遍历一遍,那么它们遍历结点的顺序分别如下所示


接下来,让我们先看看在二叉树上进行 BFS 遍历和 DFS 遍历的代码比较

(1)DFS 使用递归遍历

void dfs(TreeNode* root) 
{
    if (root == nullptr) 
    {
        return;
    }
    // 依次递归遍历它的左子树和右子树
    dfs(root->left);
    dfs(root->right);
}

(2)BFS 遍历使用队列相关的数据结构

void bfs(TreeNode* root) 
{
    // 创建一个队列
    queue<TreeNode*> q;
    q.push(root);
    while (!q.empty()) 
    {
        // 在每次循环中,使用 q.front() 获取队头节点,并将其出队
        TreeNode* node = q.front();
        q.pop();
 		
 		// 然后将下一层的节点加入队列中
        // 检查这个节点的左右子节点是否为空,如果不为空,就将它们加入队列中
        if (node->left != nullptr) 
        {
            q.push(node->left);
        }
        if (node->right != nullptr)
        {
            q.push(node->right);
        }
    }
}

参考博客: https://blog.csdn.net/v_JULY_v/article/details/6111353

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值