机器学习笔记 第8课:分类和回归树

决策树是机器学习中用于预测建模的一种重要的算法类型。

决策树模型的表现形式是二叉树。实际上,它就是算法和数据结构中的二叉树,没什么太花哨的。 每个节点代表一个输入变量(x)和该变量上的分支(这里假设是数字类型的变量)。

树的叶节点包含用于进行预测的输出变量(y)。 通过不断遍历树的各个分支,最终到达某个叶节点,并在该叶节点处输出要预测的类别值。

决策树的学习过程很短,预测速度非常快。 对于一般类型的问题,他们的准确性不错,你不需要对数据作特别的准备。

决策树具有高方差,但如果与集成学习搭配使用,可以提高预测的准确度。我们将在第13课和第14课中讨论这个主题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IAMITPRO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值