机器学习笔记 第4课:偏差,方差和权衡

经由偏差 - 方差的权衡,我们可以更好地理解机器学习算法。

偏差(bias)是模型所做的简化假设,其目的是更容易地学习目标函数。

通常,参数算法具有高偏差。它们学习起来很快,且易于理解,但通常不太灵活。反过来,它们对复杂问题的预测性能较低,无法满足算法偏差的简化假设。

决策树是一种低偏差算法,而线性回归则是一种高偏差算法。

方差(variance)表示的是,如果使用不同的训练数据,目标函数的估计有多少的变化量。目标函数是通过机器学习算法从训练数据中估计而成的,因此我们应该期望算法具有一些方差,而不是零方差。

K-Nearest Neighbors算法是一个典型的高方差算法,而线性判别分析是低方差算法的一个例子。

任何预测建模的机器学习算法,都有一个目标:实现低偏差和低方差。反之,该算法应该具有良好的预测性能。机器学习算法的参数化通常是在偏差和方差之间取得平衡。

  • 增加偏差会减少差异。
  • 增加方差将减少偏差。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IAMITPRO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值