几种常用的图像分割方法

图像分割有很多各种各样的方法:1)基于数学统计的方法(灰度直方图)2)基于纹理的方法3)基于阈值的方法4)基于深度学习的方法5)基于几何数学的方法。当然这五种方法也可以交叉使用,总之,挑选适用的方法效率最高,分割效果也最好。

1)基于数学统计的方法

       数学统计主要是分析数据的直方图,根据直方图中概率模型进行分割,如统计图像某一个范围内的值所占比重,利用这种特定 的比重去分割图像;或者使用聚类的方法将图像聚类到不同类别;

2)基于纹理的方法

      基于纹理的方法主要是根据地物纹理的不同特征(粗糙度,相似性等)对图像进行分割,主要用到灰度共生矩阵、分形理论、直方图矩等方法。纹理分析的一个弊端是:不能有效区分纹理相似但属性不同的地物(如山地雪和云,其粗糙度和自相似性基本一致,但是可以分割其他地物);

3)基于阈值的方法

     阈值分割通常有两种:经验阈值和自适应阈值;在实际应用中,经验阈值较为常用,可以根据生产需求进行设定;自适应阈值在自动化过程中用的多,一般自适应算法都要选择自适应阈值。

4)基于深度学习的方法

     目前深度学习还处在一个尴尬的时期,去学习自然界的地物特征需要大量经验的总结,进度缓慢。

5)基于几何数学的方法

      几何学是从自然界中抽象出来的一门学科,其运行符合一定的自然运行规律,在某些图像分割中使用一些简单的几何图形(如三角形,方形,圆形,直线,角度,面积,周长)(高维的有分形几何)就可以将目标分割出来。

6)几种方法的结合使用

     在进行图像分割时经常使用不同方法结合使用来达到分割效果良好的状态,分割步骤的不同,使用顺序也不同:数学统计的方法一般作为预处理和中间参考来使用(因为它是基于概率统计的,有一定 的参考性);纹理的方法是作为分割主要策略来进行的;阈值分割通常作为最后的分割手段,几乎在所有图像分割中都要用到,是作为结果输出的部分。深度学习迭代需要大量的样本进行训练,因为数据的供求和样本制作的耗时耗力,个人不太好做,需要机会。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

往后余生MBSE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值