pandas 入门(描述性统计的概述与计算—唯一值、计数和成员属性)

本文介绍了pandas库中关于描述性统计的方法,包括唯一值计算、计数操作和集合成员属性。重点讲解了isin()、match()、unique()和value_counts()的功能和使用示例,帮助读者理解如何在数据分析中应用这些工具。
摘要由CSDN通过智能技术生成

                  描述性统计的概述与计算—唯一值、计数和成员属性

 

一、唯一值、计数和集合成员属性方法 

方法描述
isin计算表征 Series 中每个值是否包含于传入序列的布尔值数组
match计算数组中每个值的整数索引,形成一个唯一值数组。有助于数据对齐和 join 类型的操作
unique计算 Series 值中的唯一值数组,按照观察顺序返回
value_counts返回一个 Series,索引是唯一值序列,值是计数个数,按照个数降序排序

二、示例

    1、issin():计算表征 Series 中每个值是否包含于传入序列的布尔值数组

            

        (1) isin 执行向量化的成员属性检查,还可以将数据集以 Series 或 DataFrame 一列的形式过滤为数据集的值子集

            

            

        (2) 与 isin 相关的 Index.get_indexer 方法,可以提供一个索引数组,这个索引数组可以将可能非唯一值数组转换为另一个唯一值数组

            

            

            

    2、match():计算数组中每个值的整数索引,形成一个唯一值数组。有助于数据对齐和 join 类型的操作

            

            

            

    3、unique():计算 Series 值中的唯一值数组,按照观察顺序返回

            

            

        唯一值并不一定按照排序好的顺序返回,但是如果有需要的话可以进行排序(uniques.sort()):

            

    4、value_counts():返回一个 Series,索引是唯一值序列,值是计数个数,按照个数降序排序

            

        value_counts() 计算 Series 包含的值的个数:

            

        value_counts() 也是有效的 pandas 顶层方法,可以用于任意数组或序列:

            

        计算 DataFrame 多个相关列的直方图,将 pandas.value_counts 传入 DataFrame 的 apply 函数:

            

            

            

            结果中的行标签是所有列中出现的不同值,数值则是这些不同值在每个列中出现的次数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值