系列文章目录
Python数据科学家养成计划(数据分析 LEVEL I 考证)前言
随着人工智能的不断发展,数据科学相关技术也越来越重要,很多人都开启了学习数据科学相关知识体系的学习之旅,本文就介绍了数据科学中数据分析 LEVEL I 考证的知识体系内容。
一、认识数据分析
1. 热点问题解读
什么是数据分析?
答:根据方法论的指导,使用数据分析软件实现数据价值发现。
为什么需要数据分析?
答:记录业务轨迹,为未来业务决策提供参考及思考。
数据分析的市场需求?
答:蓝海市场,大学数据分析专业暂无,供不应求。
数据分析的分类?
答:技术型数据分析、业务型数据分析。
2. 职位划分
3. 数据流转
(1) 技术型数据流转:
(2) 业务型数据流转:
4. 数据分析项目参与角色
-
业务人员
提出业务需求、检验分析结果的准确性、使用分析结果指导业务工作。
-
数据分析师
零碎工具辅助、提取数据、制作分析报告、制作可视化看板,汇报分析结果。
-
IT 技术人员
搭建并维护分析平台、创建数据仓库、数据更新维护。
-
业务分析师
需求的提出方、操作方、验证方,运用数据分析结果辅助业务判断。
-
IT 技术人员
搭建并维护分析平台、创建数据仓库、数据更新维护。
5. 目的及意义
数据是可量化业务的客观事实。
问: 店里最畅销的商品有哪些?
答: 商品 A、商品B、…
问: 畅销商品库存是否充足?
答: 充足
问: 新品上架,消费者是否喜欢?
答: 非常喜欢
问: 双十一结束了,这次活动的表现如何?
答: 非常好
问: 公司打算拓展新业务,现有资金是否足以开拓新业务?
答: 资金紧缺
问: 你们的产品目前在市场上的优势是什么?