多元高斯分布

一元高斯函数

f 1 ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f_1(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f1(x)=2π σ1e2σ2(xμ)2
z = x − μ σ z=\frac{x-\mu}{\sigma} z=σxμ,即对x进行标准化,此时z服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1) f 1 ( z ) = 1 2 π e − z 2 2 f_1(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}} f1(z)=2π 1e2z2

独立多元高斯函数

假设n个变量 x = [ x 1 , x 2 , ⋯ , x n ] T x=[x_1,x_2,⋯,x_n]^T x=[x1,x2,,xn]T 互不相关,且服从正态分布(维度不相关多元正态分布),各个维度的均值 μ = [ μ 1 , μ 2 , ⋯ , μ n ] T \mu=[μ_1,μ_2,⋯,μ_n]T μ=[μ1,μ2,,μn]T, 方差 σ = [ σ 1 , σ 2 , ⋯ , σ n ] T σ=[σ_1,σ_2,⋯,σ_n]^T σ=[σ1,σ2,,σn]T,根据联合概率密度公式
f n ( x ) = f 1 ( x 1 ) f 1 ( x 2 ) . . . f 1 ( x n ) = 1 ( 2 π ) n σ z e − z 2 2 f_n(x)=f_1(x_1)f_1(x_2)...f_1(x_n)=\frac{1}{(\sqrt{2\pi})^n\sigma_z}e^{-\frac{z^2}{2}} fn(x)=f1(x1)f1(x2)...f1(xn)=(2π )nσz1e2z2其中, σ z = σ 1 σ 2 . . . σ n \sigma_z=\sigma_1\sigma_2...\sigma_n σz=σ1σ2...σn z 2 = ( x 1 − μ 1 ) 2 σ 1 2 + ( x 2 − μ 2 ) 2 σ 2 2 + . . . + ( x n − μ n ) 2 σ n 2 z^2=\frac{(x_1-\mu_1)^2}{\sigma_1^2}+\frac{(x_2-\mu_2)^2}{\sigma_2^2}+...+\frac{(x_n-\mu_n)^2}{\sigma_n^2} z2=σ12(x1μ1)2+σ22(x2μ2)2+...+σn2(xnμn)2

也可以写成矩阵形式: f n ( x ) = 1 ( 2 π ) n ∣ ∑ ∣ 1 2 e − ( x − μ ) T ∣ ∑ ∣ − 1 ( x − μ ) 2 f_n(x)=\frac{1}{(\sqrt{2\pi})^n|\sum|^{\frac{1}{2}}}e^{-\frac{(x-\mu)^T|\sum|^{-1}(x-\mu)}{2}} fn(x)=(2π )n211e2(xμ)T1(xμ)其中,∑代表变量 X 的协方差矩阵, i行j列的元素值表示 x i x_i xi x j x_j xj的协方差
在这里插入图片描述

相关多元高斯函数

公式同上

Ⅰ, 定义新的坐标系,通过投影矩阵 U T U^T UT将元素映射到新的坐标系,目的是去相关性

Ⅱ, 在新的坐标下,我们定义了新的期望、协方差、协方差的逆,他们都可以通过 U U U U T U^T UT计算出来

Ⅲ, 套用标准公式,将新的期望、协方差的逆、协方差的行列式代入,发现最后的结果与 U U U U T U^T UT无关

参考教程

多元高斯分布(The Multivariate normal distribution) - bingjianing - 博客园
https://www.cnblogs.com/bingjianing/p/9117330.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值