多元高斯分布(The Multivariate normal distribution)

原文:https://www.cnblogs.com/bingjianing/p/9117330.html

在数据建模时,经常会用到多元高斯分布模型,下面就这个模型的公式并结合它的几何意义,来做一个直观上的讲解。

1, 标准高斯函数

高斯函数标准型:

f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}

这个函数描述了变量 x 的一种分布特性,变量x的分布有如下特点:

Ⅰ, 均值 = 0

Ⅱ, 方差为1

Ⅲ, 概率密度和为1

2, 一元高斯函数一般形式

 

一元高斯函数一般形式:

f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^{2}}}

我们可以令:

z=\frac{x-\mu}{\sigma}

称这个过程为标准化, 不难理解,z \sim N(0, 1),从z->x的过程如下:

Ⅰ, 将 x 向右移动 μ 个单位

Ⅱ, 将密度函数伸展 σ 倍

而标准化(x -> z)所做的事情就是上述步骤的逆向

唯一不太好理解的是前面 \frac{1}{\sqrt{2\pi}\sigma} 中的σ, 为什么这里多了一个 σ, 不是 2σ 或其他?

当然,这里可以拿着概率密度函数的性质,使用微积分进行积分,为了保证最终的积分等于1, 这里必须是 σ

这里我想说一下自己的直观感受:

实线代表的函数是标准高斯函数:

f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2\times2^2}}

虚线代表的是标准高斯函数在 x 轴方向2倍延展,效果如下:

A(x = 1) -> D(x = 2)

E(x = 1.5) -> F(x = 3)

G(x = 2) -> H(x = 4)

横向拓宽了,纵向还是保持不变,可以想象,最后的函数积分肯定不等于1

采用极限的思想,将 x 轴切分成无穷个细小的片段,每个片段可以与函数围城一个区域,因为我的切分足够小,这个区域的面积可以近似采用公式:面积 = 底 × 高 求得:

从 AQRS -> DTUV, 底乘以2倍,高维持不变,所以,要保持变化前后面积不变,函数的高度应该变为原来的 1/2

所以高斯函数在 x 轴方向做2倍延展的同时,纵向应该压缩为原来的一半,才能重新形成新的高斯分布函数

扩展到一般情形,x 轴方向做 σ 倍延拓的同时, y 轴应该压缩 σ 倍(乘以 1/σ)

3, 独立多元正态分布先假设n个变量 x = \left[ \begin{matrix} x_{1}, x_{2},\cdots,x_{n}\end{matrix}\right]^\mathrm{T}互不相关,且服从正态分布(维度不相关多元正态分布),各个维度的均值E(x) = \left[ \begin{matrix} \mu_{1}, \mu_{2},\cdots,\mu_{n}\end{matrix}\right]^\mathrm{T}, 方差 σ(x) = \left[ \begin{matrix} \sigma_{1}, \sigma_{2},\cdots,\sigma_{n}\end{matrix}\right]^\mathrm{T}\sigma(x) = \left[ \begin{matrix} \sigma_{1}, \sigma_{2},\cdots,\sigma_{n}\end{matrix}\right]^\mathrm{T}。根据联合概率密度公式:

f(x) = p(x_{1},x_{2}....x_{n}) = p(x_{1})p(x_{2})....p(x_{n}) = \frac{1}{(\sqrt{2\pi})^n\sigma_{1}\sigma_{2}\cdots\sigma_{n}}e^{-\frac{(x_{1}-\mu_{1})^2}{2\sigma_{1}^2}-\frac{(x_{2}-\mu_{2})^2}{2\sigma_{2}^2}\cdots-\frac{(x_{n}-\mu_{n})^2}{2\sigma_{n}^2}}

z^{2} = \frac{(x_{1}-\mu_{1})^2}{\sigma_{1}^2}+\frac{(x_{2}-\mu_{2})^2}{\sigma_{2}^2}\cdots+\frac{(x_{n}-\mu_{n})^2}{\sigma_{n}^2}\sigma_{z}=\sigma_{1}\sigma_{2}\cdots\sigma_{n}

这样多元正态分布又可以写成一元那种漂亮的形式了(注意一元与多元的差别):

f(z) = \frac{1}{(\sqrt{2\pi})^n\sigma_{z}}e^{-\frac{z^2}{2}}

因为多元正态分布有着很强的几何思想,单纯从代数的角度看待z很难看出z的概率分布规律,这里需要转换成矩阵形式:

z^2 = z^\mathrm{T}z = \left[ \begin{matrix} x_{1} - \mu_{1}, x_{2} - \mu_{2}, \cdots,x_{n} - \mu_{n}\end{matrix}\right] \left[ \begin{matrix} \frac{1}{\sigma_{1}^2}&0&\cdots&0\\ 0&\frac{1}{\sigma_{2}^2}&\cdots&0\\ \vdots&\cdots&\cdots&\vdots\\ 0&0&\cdots&\frac{1}{\sigma_{n}^2} \end{matrix}\right]\left[ \begin{matrix} x_{1} - \mu_{1}, x_{2} - \mu_{2}, \cdots,x_{n} - \mu_{n}\end{matrix}\right]^\mathrm{T}

等式比较长,让我们要做一下变量替换:

x - \mu_{x} = \left[ \begin{matrix} x_{1} - \mu_{1}, x_{2} - \mu_{2}, \cdots,x_{n} - \mu_{n}\end{matrix}\right]^\mathrm{T}

定义一个符号

\sum = \left[ \begin{matrix} \sigma_{1}^2&0&\cdots&0\\ 0&\sigma_{2}^2&\cdots&0\\ \vdots&\cdots&\cdots&\vdots\\ 0&0&\cdots&\sigma_{n}^2 \end{matrix}\right]

∑代表变量 X 的协方差矩阵, i行j列的元素值表示x_ix_j的协方差。

因为现在变量之间是相互独立的,所以只有对角线上 (i = j)存在元素,其他地方都等于0,且x_i与它本身的协方差就等于方差

∑是一个对角阵,根据对角矩阵的性质,它的逆矩阵:

(\sum)^{-1} = \left[ \begin{matrix} \frac{1}{\sigma_{1}^2}&0&\cdots&0\\ 0&\frac{1}{\sigma_{2}^2}&\cdots&0\\ \vdots&\cdots&\cdots&\vdots\\ 0&0&\cdots&\frac{1}{\sigma_{n}^2} \end{matrix}\right]

对角矩阵的行列式 = 对角元素的乘积

\sigma_{z}= \left|\sum\right|^\frac{1}{2} =\sigma_{1}\sigma_{2}.....\sigma_{n}

替换变量之后,等式可以简化为:

z^\mathrm{T}z=(x-\mu_x)^\mathrm{T}(\sum)^{-1}(x-\mu_x)

代入以z为自变量的标准高斯分布函数中:

f(z) = \frac{1}{(\sqrt{2\pi})^{n}\sigma_{z}}e^{-\frac{z^2}{2}}=\frac{1}{(\sqrt{2\pi})^{n}|\sum|^{\frac{1}{2}}}e^{-\frac{(x-\mu_{x})^\mathrm{T}(\sum)^{-1}(x-\mu_{x})}{2}}

 

 

 

 

 

 

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值