机器学习之朴素贝叶斯(Naive Bayes)

本文介绍了朴素贝叶斯模型,包括其数学建模过程、参数估计方法,尤其是极大似然估计和贝叶斯估计,并探讨了最大后验概率假设在分类中的作用。通过对条件概率、贝叶斯公式和全概率公式的阐述,解释了如何利用独立假设简化问题,以及如何通过MLE和Baysian Estimation估计先验和似然概率。
摘要由CSDN通过智能技术生成

概述

  • 朴素贝叶斯,朴素的含义在与对输入数据的特征做了独立性假设,简化了模型。贝叶斯顾名思义,采用了贝叶斯定理。一句话总结,基于贝叶斯定理和独立假设的分类方法。
  • 参数估计中极大似然估计与贝叶斯估计的区别,以及参数的理解。
  • 最大后验(MAP)假设的理论依据。

1.数学建模

  • 数学概念
    p(A|B)=P(AB)p(B)P(A,B|C)=P(A|C)P(B|C)p(AB)=p(A|B)p(B)=p(B|A)p(A)p(B|A)=p(A|B)p(B)p(A):B1,B2,...,BnBBBA:p(A)=i=1np(A|Bi)p(Bi) 条 件 概 率 : p ( A | B ) = P ( A B ) p ( B ) 条 件 独 立 : P ( A , B | C ) = P ( A | C ) P ( B | C ) p ( A B ) = p ( A | B ) p ( B ) = p ( B | A ) p ( A ) 贝 叶 斯 公 式 : p ( B | A ) = p ( A | B ) p ( B ) p ( A ) 全 概 率 公 式 : 假 设 B 1 , B 2 , . . . , B n 为 事 件 B 的 完 备 集 划 分 , 即 它 们 的 并 集 为 B 但 又 互 相 无 交 集 。 则 有 和 B 独 立 的 事 件 A 可 以 表 示 为 : p ( A ) = ∑ i = 1 n p ( A | B i ) p ( B i ) 。
  • 建模分析
    • 现在,我们要解决的问题是给定一个样本 x x 求它的类别 y ,其中 xX x ∈ X , yY y ∈ Y 。此处引入统计概率的概念——采样,我们认为训练集是真实数据的独立同分布的采样,即你的训练集是从满足分布规律 P(Xtrue,Ytrue) P ( X t r u e , Y t r u e ) 中采样得到的,基于大数定律和独立同分布假设,可以认为 P(X,Y) P ( X , Y ) P(Xtrue,Ytrue) P ( X t r u e , Y t r u e ) 很好的近似。因此现在的目的是从训练数据出发来求这个条件分布 P(Y|X) P ( Y | X ) 。至此,可以这样建模:
      P(Y|X)=P(X,Y)P(X) P ( Y | X ) = P ( X , Y ) P ( X )

      这里考察一下这个模型,求得数据的联合分布以及特征数据 x x 的evidence,从而求得最终的模型,我们学到的是数据的生成过程和机制,因此是生成式模型
    • 继续分析,利用贝叶斯公式或者从条件概率推导,我们可以将上述模型转换为:
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值