logistic regression精简版笔记(重在体系和推导)

基础知识

  • 关于sigmoid函数(参考之前的博文)
  • softmax函数
    δ(Zj)=eZjKk=1eZk j=1,2,...,K
  • 极大似然估计
    • 原理
      样本作为总体的一个采样,使用样本进行分布参数$\theta$的估计,可以得到多个估计,极大似然选取关于 θ 的最可能的值,即寻找一个 θ 使当前采样的可能性最大。
    • 类别
      离散
      连续
  • 回归的由来
    几率与对数几率。
    用线性回归模型的预测结果去逼近真实标记的对数几率。
  • 评价
    1.直接对分类可能性建模,无需事先假设数据分布(避免了假设不准确所带来的问题)。
    2.得到的是类别的概率预测,模型的可解释性强。
    3.对率函数是任意阶可导的凸函数,方便优化求解。

二项逻辑回归(sigmoid regression)

  • 分类模型
    p(Y=1|x)=ewTx+b1+ewTx+b
    p(Y=0|x)=1p(Y=1|x)=11+ewTx+b
    所谓的对数几率回归: lnp(Y=1|x)p(Y=0|x)=wTx+b
  • 参数估计与建模
    使用极大似然估计的思想。
    • 似然函数
      l(w)=ni=1p(yi|xi)
      对于二分类问题,考虑到对立和互斥,有:
      p(yi|xi)=[p(yi=1|xi)]yi[1p(yi=1|xi)]1yi=θ(xi)yi[1θ(xi)]1yi (θ(xi)=p(yi=1|xi))
      则有:
      l(w)=ni=1p(yi|xi)=ni=1θ(xi)yi[1θ(xi)]1yi
      对数似然函数为:
      Logl(w)=logni=1θ(xi)yi[1θ(xi)]1yi=ni=1yilogθ(xi)+(1yi)log(1θ(xi)) (由此可定义交叉熵损失函数)
      又: θ(xi)=p(yi=1|xi)=ewTxi+b1+ewTxi+b=eβTxi1+eβTxi
      则: Logl(w)=ni=1yilogθ(xi)+(1yi)log(1θ(xi))=ni=1yi(logθ(xi)log(1θ(xi)))+log(1θ(xi))
      =ni=1yilogeβTxi+log(11+eβTxi)
      =ni=1yiβTxilog(1+eβTxi)
    • 数学建模
      最大化上述的似然函数相当于最小化 1nlogl(w) ,因此可定义损失函数为 J(y,y^)=1nlogl(β)=1nni=1yiβTxilog(1+eβTxi)
      数学建模为:
      minJ(y,y^) ,无约束的优化问题。

多项逻辑回归(softmax regression)

  • 分类模型
    p(y=j|X,W)=eXTwjKj=1eXTwj j=1,...,k
    写成矩阵的形式:
    image
    考虑到参数冗余的性质:
    image
    可以实现如下的转换,令 ψ=θ1 ,则:
    p(y=k|X,W)=11+k1j=1eXTwj
    p(y=j|X,W)=eXTwj1+k1j=1eXTwj
    即一般的逻辑斯蒂回归形式,当k=2时即为2分类。
  • 损失函数
    image
    与二项逻辑回归的代价函数相比:
    image
  • 数学建模
    对损失函数加上正则项,代价函数变成严格的凸函数。
    image
    转换成这样的优化问题:
    minJ(θ)
    s.t.λ>0
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值