Logistic Regression 的简单推导

Logistic Regression 是一种 Generalized Linear Model(GLM),也即广义线性模型。

1. LR 的基本假设

逻辑回归其实是假设事件发生比(odd)的对数为线性模型。

LR 模型假设观测值 y y y 成立的对数几率(log-odds)能够表示为 K K K 重输入变量的线性组合:

log ⁡ P ( x ) 1 − P ( x ) = ∑ j = 0 K b j x j \log\frac{P(\mathbf x)}{1-P(\mathbf x)}=\sum_{j=0}^Kb_jx_j log1P(x)P(x)=j=0Kbjxj

其中 x 0 = 1 x_0=1 x0=1(特征向量进行增广),待求的模型共 K + 1 K+1 K+1 个参数。等式左边被称为 logit of P(这也是 logistic regression 得名的原因)。

等式两边同时取对数:

P ( x ) 1 − P ( x ) = exp ⁡ ( ∑ j = 0 K b j x j ) = ∏ j = 0 K exp ⁡ ( b j x j ) \frac{P(\mathbf x)}{1-P(\mathbf x)}=\exp\left(\sum_{j=0}^Kb_jx_j\right)=\prod_{j=0}^K\exp\left(b_jx_j\right) 1P(x)P(x)=exp(j=0Kbjxj)=j=0Kexp(bjxj)

这样的等式形式清晰地说明了,logistic 模型与输入之间是乘性关系,而不是线性模型的加性关系,这种加性关系也给了我们一种解释系数的方式。比如 exp ⁡ ( b j ) \exp\left(b_j\right) exp(bj) 就表明了,随着 x j x_j xj 增加一个单位( x j ⇒ x j + 1 x_j⇒ x_j+1 xjxj+1),模型的输出为真的几率增加的大小(也即 exp ⁡ ( b j ) \exp\left(b_j\right) exp(bj))。考虑 b j = 0.693 b_j=0.693 bj=0.693,则 exp ⁡ ( b j ) = 2 \exp\left(b_j\right)=2 exp(bj)=2,如果此时 x j x_j xj 表达的是数值变量,比如年龄, x j x_j xj 变量没增加 1 岁,模型输出为真的几率就变为之前的 2 倍。

如果记 z = ∑ j = 0 K b j x j z=\sum\limits_{j=0}^Kb_jx_j z=j=0Kbjxj,上述等式又可转化为:

P ( x ) = 1 1 + exp ⁡ ( − z ) P\left(\mathbf x\right)=\frac{1}{1+\exp(-z)} P(x)=1+exp(z)1

等式右端被称为 sigmoid 函数(关于 z z z),


  • <a href=“http://www.win-vector.com/blog/2011/09/the-simpler-derivation-of-logistic-regression/”, target="_blank">The Simpler Derivation of Logistic Regression
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值