nlp
Ezail_xdu
西安电子科技大学研究生在读。研究方向:机器学习/推荐系统/自然语言处理;
展开
-
word2vec原理总结
Part I:背景Part II:训练模式(CBOW,Skip Gram)Part III:优化方法(Negative Sampling,Hierarchical SoftMax)Part IV:词向量衡量指标参考论文:Word2vec Parameter Learning ExplainedPart I:背景特征表达是很基础也很重要的一步,我们通常需要用一个向量去表示一个...原创 2019-03-20 22:40:26 · 981 阅读 · 1 评论 -
《Siamese Recurrent Architectures for Learning Sentence Similarity》论文总结
今天开始整理一些之前看过的论文,一是复习巩固基础,二是可以回过头来想一想有没有新的理解。论文链接:Siamese Recurrent Architectures for Learning Sentence SimilarityLearning Text Similarity with Siamese Recurrent NetworksSiamese Recurrent,中文名叫孪...原创 2019-02-28 16:55:37 · 2299 阅读 · 0 评论 -
《Enhanced LSTM for Natural Language Inference》论文总结
ESIM,简称 “Enhanced LSTM for Natural Language Inference“。顾名思义,一种专为自然语言推断而生的加强版 LSTM。至于它是如何加强 LSTM,请继续往下看:Unlike the previous top models that use very complicated network architectures, we first dem...原创 2019-02-28 21:47:15 · 1130 阅读 · 1 评论 -
《Attention Is All You Need》论文总结
继续整理之前看过的论文,这一次看又明白了很多之前没有细究的问题,也参考了不少资料,昨晚看high了看到了2点多,学习大概就是这样一个过程吧。参考代码:https://github.com/Njust-taoye/transformer-tensorflow感谢开头先说创新点:提出self-attention,自己和自己做attention,使得每个词都有全局的语义信息(长依赖): ...原创 2019-03-06 15:44:17 · 644 阅读 · 1 评论 -
《A Decomposable Attention Model for Natural Language Inference》论文总结
问题介绍:Natural language inference,自然语言推断。其实就是文本蕴含任务(text entailment),任务的形式是:给定一个前提文本(premise),根据这个premise去推断假说文本(hypothesis)与premise的关系,一般分为蕴含关系(entailment)和矛盾关系(contradiction),蕴含关系(entailment)表示从prem...原创 2019-03-14 21:06:49 · 2061 阅读 · 1 评论 -
《Learning Deep Structured Semantic Models for Web Search using Clickthrough Data 》论文总结
1.背景DSSM是Deep Structured Semantic Model的缩写,即我们通常说的基于深度网络的语义模型,其核心思想是将query和doc映射到到共同维度的语义空间中,通过最大化query和doc语义向量之间的余弦相似度,从而训练得到隐含语义模型,达到检索的目的。DSSM有很广泛的应用,比如:搜索引擎检索,广告相关性,问答系统,机器翻译等。2. DSSM2.1简介...原创 2019-03-12 22:14:10 · 2786 阅读 · 0 评论