问题介绍:
Natural language inference,自然语言推断。其实就是文本蕴含任务(text entailment),任务的形式是:给定一个前提文本(premise),根据这个premise去推断假说文本(hypothesis)与premise的关系,一般分为蕴含关系(entailment)和矛盾关系(contradiction),蕴含关系(entailment)表示从premise中可以推断出hypothesis;矛盾关系(contradiction)即hypothesis与premise矛盾。
这篇论文的实验是用的SNLI数据集。
主要方法:
每个训练数据由三个部分组成,模型的输入为
,
,分别代表前提和假说,
表示a和b之间的关系标签,C为输出类别的个数,因此y是个C维的0,1向量。训练目标就是根据输入的a和b正确预测出他们的关系标签y。
本文的模型主要分成三个部分: