《A Decomposable Attention Model for Natural Language Inference》论文总结

本文介绍了自然语言推断任务,特别是《A Decomposable Attention Model for Natural Language Inference》论文中的方法。该模型通过Attend、Compare和Aggregate三个步骤处理前提和假说文本,利用词与词的对应关系进行推理,不依赖时序信息,适用于文本蕴含和矛盾关系判断。在SNLI数据集上表现出色,且参数量少。

问题介绍:

Natural language inference,自然语言推断。其实就是文本蕴含任务(text entailment),任务的形式是:给定一个前提文本(premise),根据这个premise去推断假说文本(hypothesis)与premise的关系,一般分为蕴含关系(entailment)和矛盾关系(contradiction),蕴含关系(entailment)表示从premise中可以推断出hypothesis;矛盾关系(contradiction)即hypothesis与premise矛盾。


这篇论文的实验是用的SNLI数据集。

主要方法:

每个训练数据由三个部分组成,模型的输入为,分别代表前提和假说,表示a和b之间的关系标签,C为输出类别的个数,因此y是个C维的0,1向量。训练目标就是根据输入的a和b正确预测出他们的关系标签y。

本文的模型主要分成三个部分:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值