CPK如何计算

CPK(过程能力指数)用于衡量过程在考虑中心偏移后满足规格要求的能力。以下是其计算步骤及注意事项:

1. CPK计算步骤

1. 1 确定规格限

  • 上规格限(USL)和下规格限(LSL)。

1.2 计算过程均值和标准差

  • 均值(μ):样本数据的平均值。
  • 标准差(σ):通常基于子组内变异估计(如使用控制图中的   R ˉ / d 2 \ \bar{R}/d_2  Rˉ/d2 S ˉ / c 4 \bar{S}/c_4 Sˉ/c4 ,而非总体标准差)。

1.3 计算单侧过程能力指数

  • CPU(上侧能力)
    C P U = U S L − μ 3 σ CPU = \frac{USL - \mu}{3\sigma} CPU=3σUSLμ
  • CPL(下侧能力)
    C P L = μ − L S L 3 σ CPL = \frac{\mu - LSL}{3\sigma} CPL=3σμLSL
  1. 确定CPK
    C P K = min ⁡ ( C P U , C P L ) CPK = \min(CPU, CPL) CPK=min(CPU,CPL)
  • 若仅存在单边规格(如只有USL或LSL),则CPK取对应单侧指数(如仅有USL时,CPK=CPU)。

2. 关键注意事项

  1. 数据前提

    • 过程需稳定(处于统计控制状态)。
    • 数据应近似服从正态分布,否则需进行变换或使用非参数方法。
  2. σ的估计

    • 推荐使用子组内变异(如控制图中的 R ˉ / d 2 \bar{R}/d_2 Rˉ/d2以减少特殊原因影响)。
  3. 异常情况处理

    • 若均值超出规格限(如μ > USL或μ < LSL),CPK视为0(过程无能力满足要求)。
  4. 结果解释

    • CPK ≥ 1.33:过程能力充足。
    • 1.0 ≤ CPK < 1.33:能力一般,需监控。
    • CPK < 1.0:能力不足,需改进。

3. CPK计算示例

  • 示例1(对称规格)
    USL=50,LSL=30,μ=40,σ=3.333
    C P U = 50 − 40 3 × 3.333 = 1.0 , C P L = 40 − 30 3 × 3.333 = 1.0 ⇒ C P K = 1.0 CPU = \frac{50-40}{3 \times 3.333} = 1.0, \quad CPL = \frac{40-30}{3 \times 3.333} = 1.0 \quad \Rightarrow \quad CPK = 1.0 CPU=3×3.3335040=1.0,CPL=3×3.3334030=1.0CPK=1.0

  • 示例2(均值偏移)
    USL=50,LSL=30,μ=42,σ=3.333
    C P U = 50 − 42 10 = 0.8 , C P L = 42 − 30 10 = 1.2 ⇒ C P K = 0.8 CPU = \frac{50-42}{10} = 0.8, \quad CPL = \frac{42-30}{10} = 1.2 \quad \Rightarrow \quad CPK = 0.8 CPU=105042=0.8,CPL=104230=1.2CPK=0.8

在过程能力分析中,标准差(σ)的估计需基于子组内变异(即组内随机波动,排除特殊原因的影响)。以下是两种常用方法的具体计算步骤:


4. (基于子组内变异估计)计算标准差

4.1 方法1:极差法(Range Method,基于 R ˉ / d 2 \bar{R}/d_2 Rˉ/d2

适用场景

  • 子组大小(n)较小(通常2≤n≤10),计算简便。
  • 常用于常规控制图(如Xbar-R图)。

步骤

  1. 划分子组

    • 将数据分为k个子组(如每班次5个样本为一组)。
    • 子组大小n需相同(如每组5个数据)。
  2. 计算每个子组的极差(R)
    R i = 子组内最大值 − 子组内最小值 ( i = 1 , 2 , . . . , k ) R_i = \text{子组内最大值} - \text{子组内最小值} \quad (i=1,2,...,k) Ri=子组内最大值子组内最小值(i=1,2,...,k)

  3. 计算平均极差(( \bar{R} ))
    R ˉ = ∑ i = 1 k R i k \bar{R} = \frac{\sum_{i=1}^k R_i}{k} Rˉ=ki=1kRi

  4. 查表获取系数 d 2 d_2 d2

    • 根据子组大小n,查统计表(如下表):
      子组大小n2345678910
      ( d_2 )1.1281.6932.0592.3262.5342.7042.8472.9703.078
  5. 估计标准差σ
    σ = R ˉ d 2 \sigma = \frac{\bar{R}}{d_2} σ=d2Rˉ


4.2 方法2:标准差法(基于 S ˉ / c 4 \bar{S}/c_4 Sˉ/c4

适用场景

  • 子组大小较大(如n>10),或需要更高精度。
  • 常用于Xbar-S图。

步骤

  1. 划分子组

    • 同极差法,子组大小n需相同。
  2. 计算每个子组的样本标准差 S i S_i Si
    S i = ∑ j = 1 n ( x i j − x ˉ i ) 2 n − 1 ( x ˉ i 为第 i 个子组的均值 ) S_i = \sqrt{\frac{\sum_{j=1}^n (x_{ij} - \bar{x}_i)^2}{n-1}} \quad (\bar{x}_i为第i个子组的均值) Si=n1j=1n(xijxˉi)2 (xˉi为第i个子组的均值)

  3. 计算平均标准差 S ˉ \bar{S} Sˉ
    S ˉ = ∑ i = 1 k S i k \bar{S} = \frac{\sum_{i=1}^k S_i}{k} Sˉ=ki=1kSi

  4. 查表获取系数 c 4 c_4 c4

    • 根据子组大小n,查统计表(如下表):
      子组大小n2345678910
      ( c_4 )0.7980.8860.9210.9400.9520.9590.9650.9690.973
  5. 估计标准差σ
    σ = S ˉ c 4 \sigma = \frac{\bar{S}}{c_4} σ=c4Sˉ


4.3 关键注意事项

  1. 子组划分原则

    • 子组内数据需在相同条件下采集(如时间、设备、批次一致),确保仅包含随机波动(普通原因变异)。
  2. 与总体标准差的区别

    • 若直接使用总体标准差公式 σ = ∑ ( x i − μ ) 2 N \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} σ=N(xiμ)2 ,会包含子组间特殊原因变异,导致σ偏大,CPK低估。
    • 务必使用子组内变异估计σ,以反映过程的自然波动。
  3. 子组大小不一致时的处理

    • 若子组大小不同,需分别计算每组的 R i / d 2 R_i/d_2 Ri/d2 S i / c 4 S_i/c_4 Si/c4,再求平均。

4.4 示例(极差法)

假设某过程每2小时采集5个样本(n=5),共10个子组(k=10),计算步骤如下:

  1. 子组极差计算

    子组R₁R₂R₁₀
    极差435
  2. 平均极差
    R ˉ = 4 + 3 + . . . + 5 10 = 4.2 \bar{R} = \frac{4+3+...+5}{10} = 4.2 Rˉ=104+3+...+5=4.2

  3. 查表得 ( d_2 )

    • n=5时,( d_2 = 2.326 )。
  4. 估计σ
    σ = 4.2 2.326 ≈ 1.805 \sigma = \frac{4.2}{2.326} \approx 1.805 σ=2.3264.21.805


4.5 总结

  • 极差法简单但精度较低,适用于小样本(n≤10)。
  • 标准差法更精确,适用于大样本(n>10)。
  • 无论哪种方法,均需确保子组划分合理,避免引入特殊原因变异。

以上内容均来自DeepSeek

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MechMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值