CPK如何计算
CPK(过程能力指数)用于衡量过程在考虑中心偏移后满足规格要求的能力。以下是其计算步骤及注意事项:
1. CPK计算步骤
1. 1 确定规格限
- 上规格限(USL)和下规格限(LSL)。
1.2 计算过程均值和标准差
- 均值(μ):样本数据的平均值。
- 标准差(σ):通常基于子组内变异估计(如使用控制图中的 R ˉ / d 2 \ \bar{R}/d_2 Rˉ/d2 或 S ˉ / c 4 \bar{S}/c_4 Sˉ/c4 ,而非总体标准差)。
1.3 计算单侧过程能力指数
- CPU(上侧能力):
C P U = U S L − μ 3 σ CPU = \frac{USL - \mu}{3\sigma} CPU=3σUSL−μ - CPL(下侧能力):
C P L = μ − L S L 3 σ CPL = \frac{\mu - LSL}{3\sigma} CPL=3σμ−LSL
- 确定CPK
C P K = min ( C P U , C P L ) CPK = \min(CPU, CPL) CPK=min(CPU,CPL)
- 若仅存在单边规格(如只有USL或LSL),则CPK取对应单侧指数(如仅有USL时,CPK=CPU)。
2. 关键注意事项
-
数据前提
- 过程需稳定(处于统计控制状态)。
- 数据应近似服从正态分布,否则需进行变换或使用非参数方法。
-
σ的估计
- 推荐使用子组内变异(如控制图中的 R ˉ / d 2 \bar{R}/d_2 Rˉ/d2以减少特殊原因影响)。
-
异常情况处理
- 若均值超出规格限(如μ > USL或μ < LSL),CPK视为0(过程无能力满足要求)。
-
结果解释
- CPK ≥ 1.33:过程能力充足。
- 1.0 ≤ CPK < 1.33:能力一般,需监控。
- CPK < 1.0:能力不足,需改进。
3. CPK计算示例
-
示例1(对称规格):
USL=50,LSL=30,μ=40,σ=3.333
C P U = 50 − 40 3 × 3.333 = 1.0 , C P L = 40 − 30 3 × 3.333 = 1.0 ⇒ C P K = 1.0 CPU = \frac{50-40}{3 \times 3.333} = 1.0, \quad CPL = \frac{40-30}{3 \times 3.333} = 1.0 \quad \Rightarrow \quad CPK = 1.0 CPU=3×3.33350−40=1.0,CPL=3×3.33340−30=1.0⇒CPK=1.0 -
示例2(均值偏移):
USL=50,LSL=30,μ=42,σ=3.333
C P U = 50 − 42 10 = 0.8 , C P L = 42 − 30 10 = 1.2 ⇒ C P K = 0.8 CPU = \frac{50-42}{10} = 0.8, \quad CPL = \frac{42-30}{10} = 1.2 \quad \Rightarrow \quad CPK = 0.8 CPU=1050−42=0.8,CPL=1042−30=1.2⇒CPK=0.8
在过程能力分析中,标准差(σ)的估计需基于子组内变异(即组内随机波动,排除特殊原因的影响)。以下是两种常用方法的具体计算步骤:
4. (基于子组内变异估计)计算标准差
4.1 方法1:极差法(Range Method,基于 R ˉ / d 2 \bar{R}/d_2 Rˉ/d2)
适用场景
- 子组大小(n)较小(通常2≤n≤10),计算简便。
- 常用于常规控制图(如Xbar-R图)。
步骤
-
划分子组
- 将数据分为k个子组(如每班次5个样本为一组)。
- 子组大小n需相同(如每组5个数据)。
-
计算每个子组的极差(R)
R i = 子组内最大值 − 子组内最小值 ( i = 1 , 2 , . . . , k ) R_i = \text{子组内最大值} - \text{子组内最小值} \quad (i=1,2,...,k) Ri=子组内最大值−子组内最小值(i=1,2,...,k) -
计算平均极差(( \bar{R} ))
R ˉ = ∑ i = 1 k R i k \bar{R} = \frac{\sum_{i=1}^k R_i}{k} Rˉ=k∑i=1kRi -
查表获取系数 d 2 d_2 d2
- 根据子组大小n,查统计表(如下表):
子组大小n 2 3 4 5 6 7 8 9 10 ( d_2 ) 1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.078
- 根据子组大小n,查统计表(如下表):
-
估计标准差σ
σ = R ˉ d 2 \sigma = \frac{\bar{R}}{d_2} σ=d2Rˉ
4.2 方法2:标准差法(基于 S ˉ / c 4 \bar{S}/c_4 Sˉ/c4)
适用场景
- 子组大小较大(如n>10),或需要更高精度。
- 常用于Xbar-S图。
步骤
-
划分子组
- 同极差法,子组大小n需相同。
-
计算每个子组的样本标准差 S i S_i Si
S i = ∑ j = 1 n ( x i j − x ˉ i ) 2 n − 1 ( x ˉ i 为第 i 个子组的均值 ) S_i = \sqrt{\frac{\sum_{j=1}^n (x_{ij} - \bar{x}_i)^2}{n-1}} \quad (\bar{x}_i为第i个子组的均值) Si=n−1∑j=1n(xij−xˉi)2(xˉi为第i个子组的均值) -
计算平均标准差 S ˉ \bar{S} Sˉ
S ˉ = ∑ i = 1 k S i k \bar{S} = \frac{\sum_{i=1}^k S_i}{k} Sˉ=k∑i=1kSi -
查表获取系数 c 4 c_4 c4
- 根据子组大小n,查统计表(如下表):
子组大小n 2 3 4 5 6 7 8 9 10 ( c_4 ) 0.798 0.886 0.921 0.940 0.952 0.959 0.965 0.969 0.973
- 根据子组大小n,查统计表(如下表):
-
估计标准差σ
σ = S ˉ c 4 \sigma = \frac{\bar{S}}{c_4} σ=c4Sˉ
4.3 关键注意事项
-
子组划分原则
- 子组内数据需在相同条件下采集(如时间、设备、批次一致),确保仅包含随机波动(普通原因变异)。
-
与总体标准差的区别
- 若直接使用总体标准差公式 σ = ∑ ( x i − μ ) 2 N \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} σ=N∑(xi−μ)2,会包含子组间特殊原因变异,导致σ偏大,CPK低估。
- 务必使用子组内变异估计σ,以反映过程的自然波动。
-
子组大小不一致时的处理
- 若子组大小不同,需分别计算每组的 R i / d 2 R_i/d_2 Ri/d2 或 S i / c 4 S_i/c_4 Si/c4,再求平均。
4.4 示例(极差法)
假设某过程每2小时采集5个样本(n=5),共10个子组(k=10),计算步骤如下:
-
子组极差计算
子组 R₁ R₂ … R₁₀ 极差 4 3 … 5 -
平均极差
R ˉ = 4 + 3 + . . . + 5 10 = 4.2 \bar{R} = \frac{4+3+...+5}{10} = 4.2 Rˉ=104+3+...+5=4.2 -
查表得 ( d_2 )
- n=5时,( d_2 = 2.326 )。
-
估计σ
σ = 4.2 2.326 ≈ 1.805 \sigma = \frac{4.2}{2.326} \approx 1.805 σ=2.3264.2≈1.805
4.5 总结
- 极差法简单但精度较低,适用于小样本(n≤10)。
- 标准差法更精确,适用于大样本(n>10)。
- 无论哪种方法,均需确保子组划分合理,避免引入特殊原因变异。
以上内容均来自DeepSeek