Title
题目
DPI-MoCo: Deep Prior Image ConstrainedMotion Compensation Reconstruction for 4D CBCT
DPI-MoCo:基于深度先验图像约束的运动补偿重建用于四维锥形束CT (4D CBCT)
01
文献速递介绍
安装在直线加速器上的N板锥束计算机断层扫描(CBCT)是图像引导放射治疗(IGRT)中的有效成像工具,因为它可以灵活地提供三维解剖信息,并纠正患者定位或靶区定位的任何变化。然而,由于呼吸运动,CBCT会受到运动引起的伪影严重降解的影响。
随后,四维CBCT(4D CBCT)被引入以解决运动模糊伪影的问题。由于其能够实时追踪器官和组织的运动,4D CBCT在肺癌的适应性放射治疗(ART)中发挥了重要作用。然而,这也会导致4D CBCT中出现严重的条纹伪影,因为每个相位分辨图像(PRI)的投影数据极其稀疏,这无疑降低了其临床价值。目前,如何在重建高质量PRI的同时保留呼吸运动的动态变化是4D CBCT的主要挑战。许多研究致力于解决这个问题,它们大致可以分为三类:迭代(IR)方法、运动补偿(MoCo)方法和基于深度学习(DL)的方法。
通过将各种正则化项纳入优化过程中,IR方法的表现优于典型的Feldkamp-David-Kress(FDK)算法。在这些方法中,总变差(TV)是最广泛使用的约束函数。通过最小化PRI的梯度图像的幅度,TV方法成功地促进了4D CBCT图像的噪声和伪影抑制。接下来,为了充分利用相邻PRI之间的时间相关性,一些研究提出在空间序列域中正则化重建图像的4D TV。此外,基于先验图像指导的TV算法是4D CBCT重建的另一种流行方案。这些研究的驱动力在于观察到个别PRI与从全采样投影数据重建的先验图像之间的差异图在运动区域是稀疏的,这可以大大提升最终重建结果,相比于经典的TV方法。然而,基于IR的方法往往导致过度平滑的结果和小细节的丧失。
Aastract
摘要
4D cone-beam computed tomography (CBCT) plays a critical role in adaptive radiation therapy for lung cancer. However, extremely sparse sampling projection data will cause severe streak artifacts in 4D CBCT images. Existing deep learning (DL) methods heavily rely on large labeled training datasets which are difficult to obtain in practical scenarios. Restricted by this dilemma, DL models often struggle with simultaneously retaining dynamic motions, removing streak degradations, and recovering fine details. To address the above challenging problem, we introduce a Deep Prior Image Constrained Motion Compensation framework (DPI-MoCo) that decouples the 4D CBCT reconstruction into two sub-tasks including coarse image restoration and structural detail fine-tuning. In the first stage, the proposed DPI-MoCo combines the prior image guidance, generative adversarial network, and contrastive learning to globally suppress the artifacts while maintaining the respiratory movements. After that, to further enhance the local anatomical structures, the motion estimation and compensation technique is adopted. Notably, our framework is performed without the need for paired datasets, ensuring practicality in clinical cases. In the Monte Carlo simulation dataset, the DPI-MoCo achieves competitive quantitative performance compared to the state-ofthe-art (SOTA) methods. Furthermore, we test DPI-MoCo in clinical lung cancer datasets, and experiments validate that DPIMoCo not only restores small anatomical structures and lesions but also preserves motion information.
4D锥束计算机断层扫描(CBCT)在肺癌的适应性放射治疗中发挥着关键作用。然而,极其稀疏的采样投影数据会导致4D CBCT图像中出现严重的条纹伪影。现有的深度学习(DL)方法在很大程度上依赖于大量标注的训练数据集,而这些数据在实际场景中难以获得。受此困境的限制,DL模型通常难以同时保留动态运动、去除条纹降解以及恢复细微细节。为了解决上述挑战性问题,我们提出了一种深度先验图像约束运动补偿框架(DPI-MoCo),将4D CBCT重建解耦为两个子任务,包括粗略图像恢复和结构细节微调。在第一阶段,DPI-MoCo结合了先验图像指导、生成对抗网络和对比学习,以全球范围内抑制伪影,同时保持呼吸运动。随后,为了进一步增强局部解剖结构,采用了运动估计和补偿技术。值得注意的是,我们的框架在不需要配对数据集的情况下执行,确保了在临床案例中的实用性。在蒙特卡罗模拟数据集中,DPI-MoCo在定量性能上与最先进(SOTA)方法相比具有竞争力。此外,我们在临床肺癌数据集中测试了DPI-MoCo,实验验证了DPI-MoCo不仅恢复了小的解剖结构和病变,而且保留了运动信息。
Conclusion
结论
It remains a challenging problem to reconstruct high-qualityclinical 4D CBCT images due to the extremely sparse-view projection data. To tackle this issue, traditional methods represented by PICCS and MoCo are proposed, and bring improvement in artifact reduction and detail recovery to a certain extent. Meanwhile, DL-based methods have attracted great attention in various medical imaging tasks and show superiority over conventional methods. However, two factors hamper the application of DL in real 4D CBCT. First, because the ground truth 4D CBCT images are inaccessible in real applications, some classical supervised learning methods, such as DDNet, and CycN-Net, have to be transferred from the simulated dataset to the clinical dataset. It is very di