python里使用iterrows()对dataframe进行遍历

假设我们有一个很简单的OTU表:
这里写图片描述
现在对这个表格进行遍历,一般写法为:

import pandas as pd

otu = pd.read_csv("otu.txt",sep="\t")
for index,row in otu.iterrows():
  print index
  print row

这里的iterrows()返回值为元组,(index,row)
上面的代码里,for循环定义了两个变量,index,row,那么返回的元组,index=index,row=row.
这里写图片描述
如果for循环时,只定义一个变量:

import pandas as pd

otu = pd.read_csv("otu.txt",sep="\t")
for row in otu.iterrows():
  print row

那么row就是整个元组。输出结果可以看出:
这里写图片描述

所以还是第一种写法比较方便。

### Ollama Prompt 使用方法 Ollama 是种允许在个人设备上运行大型语言模型的技术,这使得开发者能够更方便地测试和部署各种应用。对于Prompt设计,其核心在于构建有效的输入字符串,以便让LLM理解并给出预期的回答。 为了有效使用Ollama Prompts,在设计提示语时应考虑以下几个方面: - **清晰度**:确保指令简洁明了。 - **上下文提供**:如果适用,给予足够的背景信息帮助模型更好地理解和回应请求。 - **具体化目标**:明确指出希望获得什么样的输出形式或内容范围[^1]。 #### 示例代码展示如何调用带有特定参数配置的OLLAMA API接口发送自定义prompt: ```python import requests def send_ollama_prompt(prompt_text, api_key="your_api_key"): url = "https://api.ollama.com/v1/completions" headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' } data = {"prompt": prompt_text} response = requests.post(url, json=data, headers=headers) return response.json() # 测试函数 if __name__ == "__main__": result = send_ollama_prompt("解释什么是量子计算?") print(result['choices'][0]['text']) ``` --- ### LangChain 整合教程 LangChain 提供了套完整的工具集来加速基于大语言模型的应用程序开发过程。通过引入链的概念,可以轻松组合多个处理单元形成复杂的工作流,从而简化应用程序逻辑的设计与实现。 要将 LangChain 集成到现有项目中,通常涉及以下几部分工作: - 安装必要的库文件并通过Poetry管理依赖关系。 - 构建适合应用场景的数据管道。 - 利用预置模块快速搭建基础架构。 - 自定义业务逻辑以满足特殊需求[^2]。 下面是个简单的例子,展示了怎样利用LangChain创建个基本的任务执行器,并将其应用于自然语言查询解析场景下: ```python from langchain import ConversationChain from langchain.prompts.prompt import PromptTemplate from langchain.chains.conversation.memory import ConversationBufferMemory template = """The following is a friendly conversation between a human and an AI. Human: {input} AI:""" prompt = PromptTemplate(input_variables=["input"], template=template) conversation_chain = ConversationChain( llm=None, # 替换为实际使用的LLM实例 memory=ConversationBufferMemory(), verbose=True, prompt=prompt ) response = conversation_chain.predict(input="你好,世界!") print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值